
Sequence-aware Coding for Matrix Multiplication
with Arbitrary Recoverability

Yuchun Zou
Graduate Center

City University of New York
New York, NY

Jun Li
Queens College & Graduate Center

City University of New York
New York, NY

Abstract—Matrix multiplication is a crucial operation in many
data-intensive workloads. Given the large size of matrices in
today’s workloads, it is common to split the computation into
tasks executed on different servers. As stragglers are common
in distributed computing, various coding schemes have been
proposed to mitigate stragglers, including some even leveraging
the partially completed results from stragglers by splitting each
task into subtasks. However, existing schemes have ignored the
order of execution, making them unnecessarily complex for
encoding and decoding. In this paper, we propose a series of
constructions of straggler-leveraging coding schemes for matrix
multiplication. We consider the execution order of subtasks and
then construct the coding schemes based on the probability of
an uncoded subtask being recovered by a coded subtask. As a
result, our coding schemes can significantly save the encoding
and decoding complexities while maintaining an arbitrarily
controllable recoverability of incomplete uncoded subtasks.

I. INTRODUCTION

In many data-intensive workloads, such as machine learn-
ing [1], data analytics [2], and signal processing [3], [4],
matrix multiplication is a common operation that dominates
the total time of computation. With the fast-increasing sizes
of datasets, the size of matrix multiplication has also grown
beyond the capability of a single server. Therefore, it is
common to parallelize the computation into multiple tasks
that are executed on different servers called workers. As a
toy example, to compute the multiplication of a matrix A and
a vector x, we can split A into two submatrices such that

A · x =

[
A1

A2

]
· x =

[
A1 · x
A2 · x

]
, and compute A1 · x and A2 · x

on two workers.
Ideally, when all workers have the same configuration and

the overall workload is equally split into all tasks, all workers
should complete their tasks at the same time. However, it is
often observed in practice that some workers may become
stragglers whose performance is significantly slower than
others [5], [6]. For example, it has been measured in AWS EC2
that 5% of servers may be stragglers whose performances are
2x-5x worse than other servers [7], which can easily become
the bottleneck of the workload.

To mitigate stragglers, a common approach is to launch
additional tasks on more workers to replace those executed on

This article was written with support from the 2023 CUNY Faculty
Fellowship Publication Program. We thank Jane Alexander, William Carr,
Matthew Junge, Bianca Sosnovski, Joshua Tan, and Nicholas Vlamis for their
many suggestions for improving this paper.

stragglers [8]–[14]. For example, if one straggler is anticipated,
we can duplicate each task on two workers such that any
single task running on a straggler can be ignored. However,
this replication-based approach suffers from significantly high
resource overhead, especially when there are more stragglers.

Besides replication, many coding-based approaches have
been proposed recently (e.g., [1], [15]–[17]). Instead of directly
replicating the input of existing tasks, coded tasks can be
created such that their input matrices are encoded from the
input matrices of existing tasks. In the above example of
computing A ·x, a coded task may be created as (A1+A2) ·x,
which equals the sum of A1x and A2x. Hence, we can tolerate
any single straggler by adding only one additional worker. By
an MDS code, we can easily tolerate any r stragglers with just
r additional workers [1].

W
or

ke
r 1

W
or

ke
r 2

W
or

ke
r 3

<latexit sha1_base64="BsLKZh2dB1yIpmtWWtbvyWjx2RU=">AAAB8XicbVDLSgNBEJyNrxhfUY9eBoPgKewGX8eIF48RzAOTJczOziZDZmeWmV4xLPkLLx4U8erfePNvnCR70MSChqKqm+6uIBHcgOt+O4WV1bX1jeJmaWt7Z3evvH/QMirVlDWpEkp3AmKY4JI1gYNgnUQzEgeCtYPRzdRvPzJtuJL3ME6YH5OB5BGnBKz0cN2v9WioAD/1yxW36s6Al4mXkwrK0eiXv3qhomnMJFBBjOl6bgJ+RjRwKtik1EsNSwgdkQHrWipJzIyfzS6e4BOrhDhS2pYEPFN/T2QkNmYcB7YzJjA0i95U/M/rphBd+RmXSQpM0vmiKBUYFJ6+j0OuGQUxtoRQze2tmA6JJhRsSCUbgrf48jJp1areRfX87qxSr+dxFNEROkanyEOXqI5uUQM1EUUSPaNX9OYY58V5dz7mrQUnnzlEf+B8/gDEAJBW</latexit>

A2 · x

start end

<latexit sha1_base64="ac0HLZzlqcdgNzwe4ZmiODu9/DA=">AAAB+XicbVDLSsNAFJ3UV62vqEs3g0WoCCUpvpYtblxWsA9oQ5hMJu3QyUyYmRRL6J+4caGIW//EnX/jtM1CWw9cOJxzL/feEySMKu0431ZhbX1jc6u4XdrZ3ds/sA+P2kqkEpMWFkzIboAUYZSTlqaakW4iCYoDRjrB6G7md8ZEKir4o54kxIvRgNOIYqSN5Nt2peG7Fw2/dt7HodDwybfLTtWZA64SNydlkKPp21/9UOA0JlxjhpTquU6ivQxJTTEj01I/VSRBeIQGpGcoRzFRXja/fArPjBLCSEhTXMO5+nsiQ7FSkzgwnTHSQ7XszcT/vF6qo1svozxJNeF4sShKGdQCzmKAIZUEazYxBGFJza0QD5FEWJuwSiYEd/nlVdKuVd3r6tXDZblez+MoghNwCirABTegDu5BE7QABmPwDF7Bm5VZL9a79bFoLVj5zDH4A+vzByN1khA=</latexit>

(A1 + A2) · x

start end
W

or
ke

r 1
W

or
ke

r 2
W

or
ke

r 3

start end
<latexit sha1_base64="rgm0rigUaV2UrtVlp++p7d7WpFc=">AAAB9XicbVDJSgNBEO2JW4xb1KOXxiB4kDAjbgcPES8eI5gFkjH09PQkTXq6h+4aNQz5Dy8eFPHqv3jzb+wsB018UPB4r4qqekEiuAHX/XZyC4tLyyv51cLa+sbmVnF7p25UqimrUSWUbgbEMMElqwEHwZqJZiQOBGsE/euR33hg2nAl72CQMD8mXckjTglY6f6qk3lH3rBNQwX4qVMsuWV3DDxPvCkpoSmqneJXO1Q0jZkEKogxLc9NwM+IBk4FGxbaqWEJoX3SZS1LJYmZ8bPx1UN8YJUQR0rbkoDH6u+JjMTGDOLAdsYEembWG4n/ea0Uogs/4zJJgUk6WRSlAoPCowhwyDWjIAaWEKq5vRXTHtGEgg2qYEPwZl+eJ/XjsndWPr09KVUup3Hk0R7aR4fIQ+eogm5QFdUQRRo9o1f05jw6L8678zFpzTnTmV30B87nD2kBkc4=</latexit>

A1,1 · x
<latexit sha1_base64="gDndUhxBy9jkCs0aAabTgZ4doBw=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8SNgNvg4eIl48RjAPSNYwOztJhszOLDO9aljyH148KOLVf/Hm3zhJ9qCJBQ1FVTfdXUEsuAHX/XYWFpeWV1Zza/n1jc2t7cLObt2oRFNWo0oo3QyIYYJLVgMOgjVjzUgUCNYIBtdjv/HAtOFK3sEwZn5EepJ3OSVgpfurTuodl0dtGirAT51C0S25E+B54mWkiDJUO4WvdqhoEjEJVBBjWp4bg58SDZwKNsq3E8NiQgekx1qWShIx46eTq0f40Coh7iptSwKeqL8nUhIZM4wC2xkR6JtZbyz+57US6F74KZdxAkzS6aJuIjAoPI4Ah1wzCmJoCaGa21sx7RNNKNig8jYEb/bleVIvl7yz0untSbFymcWRQ/voAB0hD52jCrpBVVRDFGn0jF7Rm/PovDjvzse0dcHJZvbQHzifP2qNkc8=</latexit>

A1,2 · x
<latexit sha1_base64="ygMGCn0yKWU0nmOuVUDHJf37BFc=">AAAB9XicbVC7TgMxEPTxDOEVoKSxiJAoUHTHu6AIoqEMEnlIyRH5fE5ixWef7D0gOuU/aChAiJZ/oeNvcJIrIGGklUYzu9rdCWLBDbjutzM3v7C4tJxbya+urW9sFra2a0YlmrIqVULpRkAME1yyKnAQrBFrRqJAsHrQvx759QemDVfyDgYx8yPSlbzDKQEr3V+1U+/weNiioQL81C4U3ZI7Bp4lXkaKKEOlXfhqhYomEZNABTGm6bkx+CnRwKlgw3wrMSwmtE+6rGmpJBEzfjq+eoj3rRLijtK2JOCx+nsiJZExgyiwnRGBnpn2RuJ/XjOBzoWfchknwCSdLOokAoPCowhwyDWjIAaWEKq5vRXTHtGEgg0qb0Pwpl+eJbWjkndWOr09KZYvszhyaBftoQPkoXNURjeogqqIIo2e0St6cx6dF+fd+Zi0zjnZzA76A+fzB2wZkdA=</latexit>

A1,3 · x
start end

<latexit sha1_base64="UE3x8of+QjwRz6BhIfEluKrtxCU=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJAkV2eBYUQTSUQSIPKTHR+XxOTjn7rLs1EFn5DxoKEKLlX+j4Gy6JC0gYaaXRzK52d7xYcA22/W3lFhaXllfyq4W19Y3NreL2TkPLRFFWp1JI1fKIZoJHrA4cBGvFipHQE6zpDa7HfvOBKc1ldAfDmLkh6UU84JSAke6vumnl6HjUob4E/NQtluyyPQGeJ05GSihDrVv86viSJiGLgAqidduxY3BTooBTwUaFTqJZTOiA9Fjb0IiETLvp5OoRPjCKjwOpTEWAJ+rviZSEWg9Dz3SGBPp61huL/3ntBIILN+VRnACL6HRRkAgMEo8jwD5XjIIYGkKo4uZWTPtEEQomqIIJwZl9eZ40KmXnrHx6e1KqXmZx5NEe2keHyEHnqIpuUA3VEUUKPaNX9GY9Wi/Wu/Uxbc1Z2cwu+gPr8wdtp5HR</latexit>

A2,3 · x
<latexit sha1_base64="jXwxNGtJWHBqhyyB9m/ywxPClZw=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8SNgNvg4eIl48RjAPSNYwOztJhszOLDO9aljyH148KOLVf/Hm3zhJ9qCJBQ1FVTfdXUEsuAHX/XYWFpeWV1Zza/n1jc2t7cLObt2oRFNWo0oo3QyIYYJLVgMOgjVjzUgUCNYIBtdjv/HAtOFK3sEwZn5EepJ3OSVgpfurTlo+Lo/aNFSAnzqFoltyJ8DzxMtIEWWodgpf7VDRJGISqCDGtDw3Bj8lGjgVbJRvJ4bFhA5Ij7UslSRixk8nV4/woVVC3FXalgQ8UX9PpCQyZhgFtjMi0Dez3lj8z2sl0L3wUy7jBJik00XdRGBQeBwBDrlmFMTQEkI1t7di2ieaULBB5W0I3uzL86ReLnlnpdPbk2LlMosjh/bRATpCHjpHFXSDqqiGKNLoGb2iN+fReXHenY9p64KTzeyhP3A+fwBsG5HQ</latexit>

A2,2 · x
<latexit sha1_base64="AJ8P49THiI5ddKd1At7gStf23UY=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8SNgNvg4eIl48RjAPSNYwOztJhszOLDO9aljyH148KOLVf/Hm3zhJ9qCJBQ1FVTfdXUEsuAHX/XYWFpeWV1Zza/n1jc2t7cLObt2oRFNWo0oo3QyIYYJLVgMOgjVjzUgUCNYIBtdjv/HAtOFK3sEwZn5EepJ3OSVgpfurTlo+9kZtGirAT51C0S25E+B54mWkiDJUO4WvdqhoEjEJVBBjWp4bg58SDZwKNsq3E8NiQgekx1qWShIx46eTq0f40Coh7iptSwKeqL8nUhIZM4wC2xkR6JtZbyz+57US6F74KZdxAkzS6aJuIjAoPI4Ah1wzCmJoCaGa21sx7RNNKNig8jYEb/bleVIvl7yz0untSbFymcWRQ/voAB0hD52jCrpBVVRDFGn0jF7Rm/PovDjvzse0dcHJZvbQHzifP2qPkc8=</latexit>

A2,1 · x
start end

<latexit sha1_base64="YkZGfuNwgCk+sqHKHut26rumwdY=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiTia+Gi4sZlBfuAJoTJZNIOnTyYuZGWkF9x40IRt/6IO//GaZuFVg9cOJxzL/fe46eCK7CsL6Oysrq2vlHdrG1t7+zumfv1rkoySVmHJiKRfZ8oJnjMOsBBsH4qGYl8wXr++Hbm9x6ZVDyJH2CaMjciw5iHnBLQkmfWHeAiYPlN4dkODRLAE89sWE1rDvyX2CVpoBJtz/x0goRmEYuBCqLUwLZScHMigVPBipqTKZYSOiZDNtA0JhFTbj6/vcDHWglwmEhdMeC5+nMiJ5FS08jXnRGBkVr2ZuJ/3iCD8MrNeZxmwGK6WBRmAkOCZ0HggEtGQUw1IVRyfSumIyIJBR1XTYdgL7/8l3RPm/ZF8/z+rNG6LuOookN0hE6QjS5RC92hNuogiiboCb2gV6Mwno03433RWjHKmQP0C8bHN7VmlDg=</latexit>

Ã1 · x
<latexit sha1_base64="I19USpXmmcRjVSEgGNC5AP2lTcc=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiTF18JFxY3LCvYBTQiTybQdOnkwcyMtIb/ixoUibv0Rd/6N0zYLbT1w4XDOvdx7j58IrsCyvo3S2vrG5lZ5u7Kzu7d/YB5WOypOJWVtGotY9nyimOARawMHwXqJZCT0Bev647uZ331iUvE4eoRpwtyQDCM+4JSAljyz6gAXActuc6/h0CAGPPHMmlW35sCrxC5IDRVoeeaXE8Q0DVkEVBCl+raVgJsRCZwKllecVLGE0DEZsr6mEQmZcrP57Tk+1UqAB7HUFQGeq78nMhIqNQ193RkSGKllbyb+5/VTGFy7GY+SFFhEF4sGqcAQ41kQOOCSURBTTQiVXN+K6YhIQkHHVdEh2Msvr5JOo25f1i8ezmvNmyKOMjpGJ+gM2egKNdE9aqE2omiCntErejNy48V4Nz4WrSWjmDlCf2B8/gC28ZQ5</latexit>

Ã2 · x
<latexit sha1_base64="BAMQErFzd+Z3yyWBDkan1YmMeO4=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiS+Fy4qblxWsA9oQphMpu3QyYOZG2kJ+RU3LhRx64+482+ctllo64ELh3Pu5d57/ERwBZb1bZRWVtfWN8qbla3tnd09c7/aVnEqKWvRWMSy6xPFBI9YCzgI1k0kI6EvWMcf3U39zhOTisfRI0wS5oZkEPE+pwS05JlVB7gIWHabe2cODWLAY8+sWXVrBrxM7ILUUIGmZ345QUzTkEVABVGqZ1sJuBmRwKlgecVJFUsIHZEB62kakZApN5vdnuNjrQS4H0tdEeCZ+nsiI6FSk9DXnSGBoVr0puJ/Xi+F/rWb8ShJgUV0vqifCgwxngaBAy4ZBTHRhFDJ9a2YDokkFHRcFR2CvfjyMmmf1u3L+sXDea1xU8RRRofoCJ0gG12hBrpHTdRCFI3RM3pFb0ZuvBjvxse8tWQUMwfoD4zPH7h8lDo=</latexit>

Ã3 · x

(a) without subtasks (b) with subtasks

<latexit sha1_base64="9Lw7wTR46YHC9C4X7V+NpLU3hqI=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdYx48RjBPDBZwuzsJBkyO7vM9IphyV948aCIV//Gm3/jJNmDJhY0FFXddHcFiRQGXffbWVpeWV1bL2wUN7e2d3ZLe/sNE6ea8TqLZaxbATVcCsXrKFDyVqI5jQLJm8HwZuI3H7k2Ilb3OEq4H9G+Ej3BKFrp4brrdVgYI3nqlspuxZ2CLBIvJ2XIUeuWvjphzNKIK2SSGtP23AT9jGoUTPJxsZManlA2pH3etlTRiBs/m148JsdWCUkv1rYUkqn6eyKjkTGjKLCdEcWBmfcm4n9eO8XelZ8JlaTIFZst6qWSYEwm75NQaM5QjiyhTAt7K2EDqilDG1LRhuDNv7xIGqcV76JyfndWrlbzOApwCEdwAh5cQhVuoQZ1YKDgGV7hzTHOi/PufMxal5x85gD+wPn8AcJ1kFU=</latexit>

A1 · x

start end

Fig. 1: A comparison between coded matrix multiplication
without and with subtasks.

With additional coded tasks, tasks executed on stragglers
are typically disregarded. Fig. 1a illustrates that Ax can be
recovered from any two tasks, while the last one is disregarded
no matter if the straggler makes no progress or is just slightly
slower. Hence, the resources on workers with disregarded tasks
are wasted, which could have been used to further lower the
completion time. For example, if we can predict stragglers,
we can then assign a lower amount of workload on such
workers. However, predicting stragglers is impractical as they
may be caused by many factors, such as resource sharing, I/O
bottlenecks, and maintenance activities [1], [5], [7], [18]. An
incorrect prediction may further affect the overall performance.
Therefore, approaches that fit the workload dynamically with
the worker’s performance are desirable.

To dynamically adjust the workload of each worker, a task
needs to be further split into subtasks, and then coded subtasks

can be encoded from such (uncoded) subtasks [13], [19]–[34].
As shown in Fig. 1b, we can create three uncoded subtasks in
each task by further splitting each Ai, i = 1, 2, horizontally
into Ai,j , j = 1, 2, 3. The coded task also correspondingly
includes three coded subtasks Ãjx, j = 1, 2, 3, where each Ãj

is encoded from all four submatrices of A, j = 1, 2, 3, e.g.,
by an MDS code. In this way, we can recover Ax from any 6
among the total 9 subtasks. In other words, slower workers can
dynamically complete a lower amount of workload without
being predicted as stragglers in advance. However, all coded
subtasks are encoded from all uncoded subtasks equally, making
the complexities of encoding and decoding very high. It has
been measured in Microsoft Azure that the time spent on
encoding and decoding can match or even exceed the time of
computation [19].

In this paper, we argue that coded subtasks should not be
encoded in the same way. We consider the order of subtasks
executed within a task. As subtasks within a task are typically
executed in a fixed order, a subtask executed earlier naturally
has a lower probability to be incomplete than another one
executed later. As a coded subtask is added to recover the
overall result when some uncoded subtask is incomplete, a
subtask with a higher probability to be incomplete should be
encoded into coded subtask with a higher priority. Therefore,
we propose a coding framework of coding schemes where
coded subtasks can be created based on their order in the
task. Specifically, our framework allows a flexible parameter
to control how likely a coded subtask can be used to recover
the overall result. Fan et al. [34] have also proposed coding
constructions that leverage the sequence of execution, but
the constructions are ad hoc which only works for limited
combinations of parameters and only only works for matrix-
vector multiplication. To the best of our knowledge, this is
the first work that can arbitrarily achieve a tradeoff between
the mitigation of stragglers and the complexity of the coding
scheme. Moreover, we demonstrate that our coding scheme
can support not only matrix-vector multiplication, but also
matrix-matrix multiplication.

II. SYSTEM MODEL

We assume that the workload is matrix multiplication.
For now, we just consider a special case of matrix-vector
multiplication, and will extend the model to matrix-matrix
multiplication in Sec. VI. Hence, we consider a workload of
computing A · x, and the workload will be computed on n
workers in parallel. Each worker computes a task containing a
fixed number of subtasks, which are also executed in a fixed
order. Once a subtask is complete, its result will be uploaded to
another server called master. The master keeps receiving results
of subtasks from all workers until such results are sufficient for
recovering Ax, and then the master may instruct all workers
to stop if they still have subtasks incomplete.

To compute A · x in parallel, we split A into n submatrices

horizontally, i.e., A1, . . . , An, such that A · x =

A1 · x
...

An · x

.

Therefore, Ai will be assigned to Worker i, i = 1, . . . , n. Each
worker then further splits Ai to create u subtasks (u ≤ s),

called uncoded subtasks, such that Ai =

Ai,1

...
Ai,u

.

Besides uncoded subtasks, Worker i will also have c = s−u
additional coded subtasks Ãi,j · x, j = 1, . . . , c, i = 1, . . . , n,
in order to mitigate potential stragglers. Conventionally, Ãi,j

can be encoded by a ((u+ c)n, un) systematic MDS codes as
a linear combination of all submatrices of A, i.e., {Ai,j |i =
1, . . . , n, j = 1, . . . , u} [20]. We name this scheme as global
MDS codes.

In this paper, we argue that not all subtasks have an equal
probability of being incomplete when the completed results are
sufficient for decoding, as subtasks are not started concurrently
but sequentially. A naive application of this idea is placing all
uncoded subtasks at the beginning on each worker. However,
all coded subtasks are still considered equally likely to be
incomplete. Therefore, we can save the complexities of coded
subtasks based on their probability of being incomplete.

We now give an intuition of the coding schemes in this
paper. For convenience, we define Ci,j = Ai,j · x and C̃i,j =
Ãi,j · x. We assume that Worker i executes subtasks in the
order of Ci,u, . . . , Ci,1, C̃i,1, . . . , C̃i,c, i = 1, . . . , n, such that
uncoded subtasks are always executed before coded subtasks.
Moreover, note that the order of uncoded subtasks is decreasing
for convenience only. The completion of all uncoded subtasks
is sufficient to obtain C = Ax without decoding. When there
is one uncoded subtask incomplete, the only possibility is
having the last uncoded subtask on some worker incomplete,
i.e., Ci,1. Moreover, if we anticipate this incomplete subtask
can be recovered by one coded subtask, this one must be the
first coded subtask on some other worker, i.e., C̃i′,1. More
generally, an uncoded subtask Ci,j with a smaller j is more
likely to be incomplete and a coded subtask C̃i,j with a smaller
j is also more likely to be needed. Intuitively, the complexity
of Ãi,j in a coded subtask should grow with the increasing
of j, and any Ai,j becomes less likely to be encoded into a
coded subtask with the increasing of j.

In this paper, our objective is to find the coding scheme such
that given the first un completed subtasks, the probability that
Ax can be recovered is at least θ, called the θ-recoverability,
0 ≤ θ ≤ 1. Obviously, global MDS codes can guarantee θ = 1,
indicating strong mitigation of stragglers. When θ = 0, on
the other hand, no coded subtask is necessary, and also there
is no mitigation of any kind of stragglers. Hence, we can
achieve a tradeoff between the mitigation of stragglers and the
complexity of the coding scheme.

To construct the coding scheme, we first compute the chance
that an Ai,j is needed by an Ãi′,j′ (in Sec. III). Then we present
algorithms to give the code construction for matrix-vector
multiplication while achieving the θ-recoverability (in Sec. IV
and Sec. V). We also extend the construction to matrix-matrix
multiplication (in Sec. VI).

III. PLACEMENTS OF COMPLETED SUBTASKS

As we aim to recover Ax with a probability of at least θ,
when un subtasks — no matter uncoded or coded — have
been completed, we need to understand how likely an uncoded
subtask needs to be recovered by a coded subtask.

We first consider the number of valid placements of com-
pleted subtasks, where a valid placement must have all subtasks
completed sequentially. In other words, any incomplete subtasks
should appear after all completed subtasks on the same worker.
Assume that xi is the number of completed subtasks on Worker
i, and then we have

n∑
i=1

xi = un, s.t. 0 ≤ xi ≤ u+ c, i = 1, . . . , n. (1)

Therefore, the number of valid placements equals the number
of integer solutions of (1). This is a counting problem and can
be solved by the inclusion-exclusion principle.

We define S as the set of all integer solutions of
∑n

i=1 xi =
un, s.t. 0 ≤ xi, i = 1, . . . , n. S corresponds to (1) with all
upper bounds can be violated. Then we have |S| =

(
un+n−1

n−1

)
.

Similarly, we define Si as the set of all integer solutions in S
with the upper bound of only xi is violated, i.e., xi ≥ u+c+1
which is equivalent to xi − (u + c + 1) ≥ 0. Thus we have
|Si| =

(
un−(u+c+1)+n−1

n−1

)
.

When we have two variables in (1) violate their upper bounds,
i.e., xi ≥ u+c+1 and xj ≥ u+c+1, 1 ≤ i ̸= j ≤ n, we can
similarly have |Si ∩ Sj | =

(
un−2(u+c+1)+n−1

n−1

)
. Furthermore,

if m variables violate their upper bounds, we have the number
of such integer solutions as

(
un−m(u+c+1)+n−1

n−1

)
. Eventually,

there can be at most
⌊

un
u+c+1

⌋
variables violating their upper

bounds as
∑n

i=1 xi must be no less than the sum of all violated
upper bounds.

By the inclusion-exclusion principle, the number of solutions
of (1) equals

S −
n∑

i=1

|Si|+
∑

1≤i<j≤n

|Si ∩ Sj |+ · · ·

=

(
un+ n− 1

n− 1

)
−
(
n

1

)(
un− (u+ c+ 1) + n− 1

n− 1

)
+ · · ·

+ (−1)m
(
n

m

)(
un−m(u+ c+ 1) + (n− 1)

n− 1

)
+ · · ·

=

⌊ un
u+c+1 ⌋∑
m=0

(−1)m
(
n

m

)(
un−m(u+ c+ 1) + (n− 1)

n− 1

)
≜|N(n, u, c)|,

where we define N(n, u, c) as the set of all valid placements.
Moreover, we are also particularly interested in special cases

such that a coded subtask may not be needed to recover an
uncoded subtask. As shown in Fig. 2, we can see that all
uncoded subtasks Ci,j with j > 1 are completed and all coded
subtasks C̃i′,j′ with j′ > 1 are incomplete. Therefore, if an
uncoded subtask is incomplete, it can only be recovered from
a coded subtask with j′ ≤ 1. Reversely, a coded subtask in

W
or

ke
r 1

W
or

ke
r 2

W
or

ke
r 3

W
or

ke
r 4

<latexit sha1_base64="ouYIGJh8lgSpJE7kYOz2bYAmVIY=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8SNgVX8dgLh4jmAckS5id9CZDZmeXmVkhLPkILx4U8er3ePNvnCR70MSChqKqm+6uIBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj2tRvPaHSPJaPZpygH9GB5CFn1FipVetl3rk36ZXKbsWdgSwTLydlyFHvlb66/ZilEUrDBNW647mJ8TOqDGcCJ8VuqjGhbEQH2LFU0gi1n83OnZBTq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwls/4zJJDUo2XxSmgpiYTH8nfa6QGTG2hDLF7a2EDamizNiEijYEb/HlZdK8qHjXlauHy3L1Lo+jAMdwAmfgwQ1U4R7q0AAGI3iGV3hzEufFeXc+5q0rTj5zBH/gfP4AXGCO8g==</latexit>

C1,1
<latexit sha1_base64="ma5BRAEigBPGWDvSCi9INw4ksuU=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgQcJu8HUM5uIxgnlAsoTZSScZMju7zMwKYclHePGgiFe/x5t/4yTZgyYWNBRV3XR3BbHg2rjut5NbW9/Y3MpvF3Z29/YPiodHTR0limGDRSJS7YBqFFxiw3AjsB0rpGEgsBWMazO/9YRK80g+mkmMfkiHkg84o8ZKrVov9S4q016x5JbdOcgq8TJSggz1XvGr249YEqI0TFCtO54bGz+lynAmcFroJhpjysZ0iB1LJQ1R++n83Ck5s0qfDCJlSxoyV39PpDTUehIGtjOkZqSXvZn4n9dJzODWT7mME4OSLRYNEkFMRGa/kz5XyIyYWEKZ4vZWwkZUUWZsQgUbgrf88ippVsredfnq4bJUvcviyMMJnMI5eHADVbiHOjSAwRie4RXenNh5cd6dj0VrzslmjuEPnM8fXeWO8w==</latexit>

C1,2

<latexit sha1_base64="InU3Dd8DhPYGwNP2w0xLCmID/EM=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgQcJu8HUM5uIxgnlAEsLsZDYZMju7zPQKYclHePGgiFe/x5t/4yTZgyYWNBRV3XR3+bEUBl3328mtrW9sbuW3Czu7e/sHxcOjpokSzXiDRTLSbZ8aLoXiDRQoeTvWnIa+5C1/XJv5rSeujYjUI05i3gvpUIlAMIpWatX6aeWiMu0XS27ZnYOsEi8jJchQ7xe/uoOIJSFXyCQ1puO5MfZSqlEwyaeFbmJ4TNmYDnnHUkVDbnrp/NwpObPKgASRtqWQzNXfEykNjZmEvu0MKY7MsjcT//M6CQa3vVSoOEGu2GJRkEiCEZn9TgZCc4ZyYgllWthbCRtRTRnahAo2BG/55VXSrJS96/LVw2WpepfFkYcTOIVz8OAGqnAPdWgAgzE8wyu8ObHz4rw7H4vWnJPNHMMfOJ8/X2yO9A==</latexit>

C2,2
<latexit sha1_base64="8IdsUWQWFpQuyFQiMZQ0EflVtdE=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgQcJu8HUM5uIxgnlAsoTZSScZMju7zMwKYclHePGgiFe/x5t/4yTZgyYWNBRV3XR3BbHg2rjut5NbW9/Y3MpvF3Z29/YPiodHTR0limGDRSJS7YBqFFxiw3AjsB0rpGEgsBWMazO/9YRK80g+mkmMfkiHkg84o8ZKrVovrVx4016x5JbdOcgq8TJSggz1XvGr249YEqI0TFCtO54bGz+lynAmcFroJhpjysZ0iB1LJQ1R++n83Ck5s0qfDCJlSxoyV39PpDTUehIGtjOkZqSXvZn4n9dJzODWT7mME4OSLRYNEkFMRGa/kz5XyIyYWEKZ4vZWwkZUUWZsQgUbgrf88ippVsredfnq4bJUvcviyMMJnMI5eHADVbiHOjSAwRie4RXenNh5cd6dj0VrzslmjuEPnM8fXeeO8w==</latexit>

C2,1

<latexit sha1_base64="4kNE3+AEiOdVOLB6hLOflRaHK+U=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgQcKu72MwF48RzAOSJcxOOsmQ2dllZlYISz7CiwdFvPo93vwbJ8keNLGgoajqprsriAXXxnW/ndzK6tr6Rn6zsLW9s7tX3D9o6ChRDOssEpFqBVSj4BLrhhuBrVghDQOBzWBUnfrNJ1SaR/LRjGP0QzqQvM8ZNVZqVrvpxZk36RZLbtmdgSwTLyMlyFDrFr86vYglIUrDBNW67bmx8VOqDGcCJ4VOojGmbEQH2LZU0hC1n87OnZATq/RIP1K2pCEz9fdESkOtx2FgO0NqhnrRm4r/ee3E9G/9lMs4MSjZfFE/EcREZPo76XGFzIixJZQpbm8lbEgVZcYmVLAheIsvL5PGedm7Ll89XJYqd1kceTiCYzgFD26gAvdQgzowGMEzvMKbEzsvzrvzMW/NOdnMIfyB8/kDX26O9A==</latexit>

C3,1

<latexit sha1_base64="oqjQvALUdjPZJSxBW++m3HFRm/I=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgQcKuxMcxmIvHCOYByRJmJ51kyOzsMjMrhCUf4cWDIl79Hm/+jZNkD5pY0FBUddPdFcSCa+O6305ubX1jcyu/XdjZ3ds/KB4eNXWUKIYNFolItQOqUXCJDcONwHaskIaBwFYwrs381hMqzSP5aCYx+iEdSj7gjBortWq9tHLhTXvFklt25yCrxMtICTLUe8Wvbj9iSYjSMEG17nhubPyUKsOZwGmhm2iMKRvTIXYslTRE7afzc6fkzCp9MoiULWnIXP09kdJQ60kY2M6QmpFe9mbif14nMYNbP+UyTgxKtlg0SAQxEZn9TvpcITNiYgllittbCRtRRZmxCRVsCN7yy6ukeVn2rstXD5VS9S6LIw8ncArn4MENVOEe6tAABmN4hld4c2LnxXl3PhatOSebOYY/cD5/AGD1jvU=</latexit>

C4,1

<latexit sha1_base64="xb/ONf1VX/Z9FJ3KQ2NoYRPLoak=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8SNgN8XEM5uIxgnlAEsLspDcZMju7zMwKYclHePGgiFe/x5t/4yTZgyYWNBRV3XR3+bHg2rjut7O2vrG5tZ3bye/u7R8cFo6OmzpKFMMGi0Sk2j7VKLjEhuFGYDtWSENfYMsf12Z+6wmV5pF8NJMYeyEdSh5wRo2VWrV+WrksT/uFolty5yCrxMtIETLU+4Wv7iBiSYjSMEG17nhubHopVYYzgdN8N9EYUzamQ+xYKmmIupfOz52Sc6sMSBApW9KQufp7IqWh1pPQt50hNSO97M3E/7xOYoLbXsplnBiUbLEoSAQxEZn9TgZcITNiYgllittbCRtRRZmxCeVtCN7yy6ukWS5516Wrh0qxepfFkYNTOIML8OAGqnAPdWgAgzE8wyu8ObHz4rw7H4vWNSebOYE/cD5/AGJ6jvY=</latexit>

C4,2

<latexit sha1_base64="nR/A6V7A0kOLCNzoX7FgKcRCGtw=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8SNiNz2MwF48RzAOSJcxOJsmQ2dllplcISz7CiwdFvPo93vwbJ8keNLGgoajqprsriKUw6Lrfzsrq2vrGZm4rv72zu7dfODhsmCjRjNdZJCPdCqjhUiheR4GSt2LNaRhI3gxG1anffOLaiEg94jjmfkgHSvQFo2ilZrWbXpyXJ91C0S25M5Bl4mWkCBlq3cJXpxexJOQKmaTGtD03Rj+lGgWTfJLvJIbHlI3ogLctVTTkxk9n507IqVV6pB9pWwrJTP09kdLQmHEY2M6Q4tAselPxP6+dYP/WT4WKE+SKzRf1E0kwItPfSU9ozlCOLaFMC3srYUOqKUObUN6G4C2+vEwa5ZJ3Xbp6uCxW7rI4cnAMJ3AGHtxABe6hBnVgMIJneIU3J3ZenHfnY9664mQzR/AHzucPYPOO9Q==</latexit>

C3,2

<latexit sha1_base64="Fj5ntNIROg0lQABTzFRqNdODIB0=">AAAB+HicbVDLSsNAFJ34rPXRqEs3wSK4kJLU57LYjcsK9gFtCJPJpB06mYSZG6GGfIkbF4q49VPc+TdO2yy09cCFwzn3cu89fsKZAtv+NlZW19Y3Nktb5e2d3b2KuX/QUXEqCW2TmMey52NFORO0DQw47SWS4sjntOuPm1O/+0ilYrF4gElC3QgPBQsZwaAlz6wMgPGAZs3cy87P6rlnVu2aPYO1TJyCVFGBlmd+DYKYpBEVQDhWqu/YCbgZlsAIp3l5kCqaYDLGQ9rXVOCIKjebHZ5bJ1oJrDCWugRYM/X3RIYjpSaRrzsjDCO16E3F/7x+CuGNmzGRpEAFmS8KU25BbE1TsAImKQE+0QQTyfStFhlhiQnorMo6BGfx5WXSqdecq9rl/UW1cVvEUUJH6BidIgddowa6Qy3URgSl6Bm9ojfjyXgx3o2PeeuKUcwcoj8wPn8ASluS3A==</latexit>

C̃3,2

<latexit sha1_base64="kPCBOA/iTjlZXysINR7dc0hTeyQ=">AAAB+HicbVDLSsNAFJ34rPXRqEs3wSK4kJKU+lgWu3FZwT6gDWEyuWmHTiZhZiLUkC9x40IRt36KO//GaZuFth64cDjnXu69x08Ylcq2v4219Y3Nre3STnl3b/+gYh4edWWcCgIdErNY9H0sgVEOHUUVg34iAEc+g54/ac383iMISWP+oKYJuBEecRpSgpWWPLMyVJQFkLVyL2tc1HPPrNo1ew5rlTgFqaICbc/8GgYxSSPgijAs5cCxE+VmWChKGOTlYSohwWSCRzDQlOMIpJvND8+tM60EVhgLXVxZc/X3RIYjKaeRrzsjrMZy2ZuJ/3mDVIU3bkZ5kirgZLEoTJmlYmuWghVQAUSxqSaYCKpvtcgYC0yUzqqsQ3CWX14l3XrNuapd3jeqzdsijhI6QafoHDnoGjXRHWqjDiIoRc/oFb0ZT8aL8W58LFrXjGLmGP2B8fkDS+KS3Q==</latexit>

C̃4,2

<latexit sha1_base64="7Ajln7VJsnXhKcCHjpKxUEnsEq4=">AAAB+HicbVDLSsNAFJ3UV62PRl26CRbBhZSk+FoWu3FZwT6gDWEymbRDJ5MwcyPUkC9x40IRt36KO//GaZuFth64cDjnXu69x084U2Db30ZpbX1jc6u8XdnZ3duvmgeHXRWnktAOiXks+z5WlDNBO8CA034iKY58Tnv+pDXze49UKhaLB5gm1I3wSLCQEQxa8szqEBgPaNbKvaxx3sg9s2bX7TmsVeIUpIYKtD3zaxjEJI2oAMKxUgPHTsDNsARGOM0rw1TRBJMJHtGBpgJHVLnZ/PDcOtVKYIWx1CXAmqu/JzIcKTWNfN0ZYRirZW8m/ucNUghv3IyJJAUqyGJRmHILYmuWghUwSQnwqSaYSKZvtcgYS0xAZ1XRITjLL6+SbqPuXNUv7y9qzdsijjI6RifoDDnoGjXRHWqjDiIoRc/oFb0ZT8aL8W58LFpLRjFzhP7A+PwBSNSS2w==</latexit>

C̃2,2

<latexit sha1_base64="BTn1gBk1IHUHFHCHKssIGn1xKvU=">AAAB+HicbVDLSsNAFJ3UV62PRl26CRbBhZSk+FoWu3FZwT6gDWEyuWmHTiZhZiLUkC9x40IRt36KO//GaZuFth64cDjnXu69x08Ylcq2v43S2vrG5lZ5u7Kzu7dfNQ8OuzJOBYEOiVks+j6WwCiHjqKKQT8RgCOfQc+ftGZ+7xGEpDF/UNME3AiPOA0pwUpLnlkdKsoCyFq5lznnjdwza3bdnsNaJU5BaqhA2zO/hkFM0gi4IgxLOXDsRLkZFooSBnllmEpIMJngEQw05TgC6Wbzw3PrVCuBFcZCF1fWXP09keFIymnk684Iq7Fc9mbif94gVeGNm1GepAo4WSwKU2ap2JqlYAVUAFFsqgkmgupbLTLGAhOls6roEJzll1dJt1F3ruqX9xe15m0RRxkdoxN0hhx0jZroDrVRBxGUomf0it6MJ+PFeDc+Fq0lo5g5Qn9gfP4AR02S2g==</latexit>

C̃1,2

<latexit sha1_base64="VaZJo1FJ8E27x0+ZcpdBRXD5Y1Y=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgQkoivpbFblxWsA9oQ5hMpu3QySTMTIQa8iVuXCji1k9x5984bbPQ1gMXDufcy733BAlnSjvOt7Wyura+sVnaKm/v7O5V7P2DtopTSWiLxDyW3QArypmgLc00p91EUhwFnHaCcWPqdx6pVCwWD3qSUC/CQ8EGjGBtJN+u9DXjIc0auZ+5Z27u21Wn5syAlolbkCoUaPr2Vz+MSRpRoQnHSvVcJ9FehqVmhNO83E8VTTAZ4yHtGSpwRJWXzQ7P0YlRQjSIpSmh0Uz9PZHhSKlJFJjOCOuRWvSm4n9eL9WDGy9jIkk1FWS+aJBypGM0TQGFTFKi+cQQTCQztyIywhITbbIqmxDcxZeXSfu85l7VLu8vqvXbIo4SHMExnIIL11CHO2hCCwik8Ayv8GY9WS/Wu/Uxb12xiplD+APr8wdFyJLZ</latexit>

C̃1,1

<latexit sha1_base64="pxRNZ6MscwoxaZ0H90Oiw5vyacM=">AAAB+HicbVDLSsNAFJ3UV62PRl26CRbBhZSk+FoWu3FZwT6gDWEyuWmHTiZhZiLUkC9x40IRt36KO//GaZuFth64cDjnXu69x08Ylcq2v43S2vrG5lZ5u7Kzu7dfNQ8OuzJOBYEOiVks+j6WwCiHjqKKQT8RgCOfQc+ftGZ+7xGEpDF/UNME3AiPOA0pwUpLnlkdKsoCyFq5lzXOndwza3bdnsNaJU5BaqhA2zO/hkFM0gi4IgxLOXDsRLkZFooSBnllmEpIMJngEQw05TgC6Wbzw3PrVCuBFcZCF1fWXP09keFIymnk684Iq7Fc9mbif94gVeGNm1GepAo4WSwKU2ap2JqlYAVUAFFsqgkmgupbLTLGAhOls6roEJzll1dJt1F3ruqX9xe15m0RRxkdoxN0hhx0jZroDrVRBxGUomf0it6MJ+PFeDc+Fq0lo5g5Qn9gfP4AR0+S2g==</latexit>

C̃2,1

<latexit sha1_base64="YycyzXMcwKNiAB7VOmgymjkcF/8=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCCymJ72WxG5cV7APaECaTm3bo5MHMRKghX+LGhSJu/RR3/o3TNgttPXDhcM693HuPl3AmlWV9G6WV1bX1jfJmZWt7Z7dq7u13ZJwKCm0a81j0PCKBswjaiikOvUQACT0OXW/cnPrdRxCSxdGDmiTghGQYsYBRorTkmtWBYtyHrJm72fmpnbtmzapbM+BlYhekhgq0XPNr4Mc0DSFSlBMp+7aVKCcjQjHKIa8MUgkJoWMyhL6mEQlBOtns8Bwfa8XHQSx0RQrP1N8TGQmlnISe7gyJGslFbyr+5/VTFdw4GYuSVEFE54uClGMV42kK2GcCqOITTQgVTN+K6YgIQpXOqqJDsBdfXiads7p9Vb+8v6g1bos4yugQHaETZKNr1EB3qIXaiKIUPaNX9GY8GS/Gu/Exby0ZxcwB+gPj8wdI1pLb</latexit>

C̃3,1

<latexit sha1_base64="0zRfM6MqNZG90rWbAab2YJdFrdQ=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCCymJ1Mey2I3LCvYBbQiTyaQdOnkwcyPUkC9x40IRt36KO//GaZuFth64cDjnXu69x0sEV2BZ30ZpbX1jc6u8XdnZ3duvmgeHXRWnkrIOjUUs+x5RTPCIdYCDYP1EMhJ6gvW8SWvm9x6ZVDyOHmCaMCcko4gHnBLQkmtWh8CFz7JW7maNczt3zZpVt+bAq8QuSA0VaLvm19CPaRqyCKggSg1sKwEnIxI4FSyvDFPFEkInZMQGmkYkZMrJ5ofn+FQrPg5iqSsCPFd/T2QkVGoaerozJDBWy95M/M8bpBDcOBmPkhRYRBeLglRgiPEsBexzySiIqSaESq5vxXRMJKGgs6roEOzll1dJ96JuX9Uv7xu15m0RRxkdoxN0hmx0jZroDrVRB1GUomf0it6MJ+PFeDc+Fq0lo5g5Qn9gfP4ASl2S3A==</latexit>

C̃4,1

start end

start end

start end

start end

completed task incompleted task

x 1=3
x 4=3

x 2=1
x 3=1

|N(4,1,1)|
|N(4,2,2)|

Fig. 2: An example of placements of 8 completed subtasks
with n = 4 and u = c = 2.

this case also only needs to recover an uncoded subtask with
j ≤ 1. Therefore, coded subtasks with j′ ≤ 1 can be encoded
as combinations of uncoded subtasks with j ≤ 1 only. This
example is just one placement in N(4, 2, 2). However, how
many placements are there with j ≤ 1 and j′ ≤ 1? As the first
subtasks C(i, 2) are always completed and the last subtasks
C̃(i′, 2) are always incomplete, i = 1, . . . , n, we only need to
consider the placements of four completed subtasks among all
places in-between. Therefore, the number of such placements
is |N(4, 1, 1)|.

Note that a placement in N(n, u, c) does not guarantee that
some worker’s first (uncoded) subtask is incomplete or some
worker’s last (coded) subtask is completed, as it does not
violate the requirement of 0 ≤ xi ≤ u+ c. Hence, we define
Nc(n, u, c) as the set of placements in N(n, u, c) that at least
one coded subtask C̃i′,j′ with a dedicated j′ = c is completed.
By this definition, we have

|Nc(n, u, c)| =
{
|N(n, u, c)| c = 1

|N(n, u, c)| − |N(n, u, c− 1)| c > 1.

In Fig. 3, we illustrate values of |Nc(n = 5, u, c)| with
c = 1, 2, 3 and u = 1, . . . , 4. With a larger u, the number
of corresponding placements in Nc(n = 5, u, c) also grows,
as the higher u gives more available locations to place the
completed uncoded subtasks. In other words, more incomplete
subtasks can be recovered if the coding scheme can recover
such placements. Meanwhile, it means that the coding scheme

u=1 u=2 u=3 u=4
0.0

0.5

1.0

|N
c(
n

=
5,
u
,c

)|

×102 (a) c=1

u=1 u=2 u=3 u=4
0

2

4

6

×102 (b) c=2

u=1 u=2 u=3 u=4
0.0

0.5

1.0

×103 (c) c=3

Fig. 3: The numbers of placements in N(n = 5, u, c).

becomes more complex. Hence, we will exploit such a tradeoff
to achieve the θ-recoverability in Sec. IV. Moreover, with c
increased, the ratio between |Nc(n = 5, u, c)| and |Nc(n =
5, u = 4, c)| also decreases, meaning that the corresponding
coded subtasks are more likely to have higher complexities.
Therefore, if workers are not heavily straggling, we can also
expect a lower decoding complexity.

IV. STATIC CONSTRUCTION

Based on the intuition in Fig. 3 where |Nc(n, u, c)| always
increases with u, we first propose a static construction of
the sequence-aware coding that supports θ-recoverability. To
construct the coding scheme, we first introduce the following
theorem.

Theorem 1. Given valid c and u, Nc(n, u, c) ⊆ Nc(n, u+1, c).

Proof. Given any one placement in Nc(n, u, c), we can add
one uncoded subtask on top of existing subtasks on all workers,
and then we have a placement with u+1 uncoded subtasks and
c coded subtasks in Nc(n, u+ 1, c). Therefore, Nc(n, u, c) ⊆
Nc(u, u+ 1, c)

Compared to Nc(n, u, c), the additional placements in
Nc(n, u + 1, c) also suggest that more uncoded subtasks
are needed in the coded subtasks C̃i,c. As there should be
u uncoded subtasks and c coded subtasks on each worker,
to achieve the θ-recoverability, we should cover at least
θ|Nc(n, u, c)| placements. Hence, we need to find the minimum
u′ such that |Nc(n, u

′, c)| ≥ θ|Nc(n, u, c)| where u′ ≤ u. The
coding scheme can thus be constructed as in Alg. 1.

Algorithm 1 The static construction of the sequence-aware
coding with θ-recoverability.

1: for j = 1, . . . , c do
2: uj = min

{
u′
∣∣∣ |Nc(n,u

′,c)|
|Nc(n,u,c)| ≥ θ

}
3: encode Ãi,j , i = 1, . . . , n with an MDS code from

{Ai,j |j ≤ uj , i = 1, . . . , n}

Intuitively, with an increased θ, we can achieve a higher level
of recoverability, as more cases of incomplete uncoded subtasks
can be recovered. We hence present the actual recoverability
of the static construction in Fig. 4, with n = 5, u = 4, and
c = 3. We measure the recoverability by randomly generating
10000 cases of un sequentially completed subtasks in total
on all workers, and the actual recoverability is measured as
the ratio of the cases that the result of all subtasks can be
recovered to all cases. In Fig. 4, we change the value of θ
from 0 to 1, and we can see that the actual recoverability is
always above θ. In fact, we can see the recoverability increases
when it becomes close to θ, and such turning points directly
correspond to |Nc(n,u

′,c)|
|Nc(n,u,c)| , u

′ = 1, . . . , u.
We also measure the complexity of coded subtasks in terms

of the number of uncoded subtasks they are encoded from.
When all coded subtasks are encoded from all un uncoded
subtasks, it is equivalent to global MDS codes. From Fig. 4
we can see that unless the value of θ is close 1, the average

0.00 0.25 0.50 0.75 1.00
θ

0.00

0.25

0.50

0.75

1.00

ac
tu

al
re

co
ve

ra
bi

lit
y

0

5

10

15

20

av
er

ag
e

co
m

pl
ex

ity

Fig. 4: The actual recoverability and average complexity of
the static construction with n = 5, u = 4, and c = 3.

complexity of coded subtasks can be significantly lower, and
we can easily achieve a tradeoff between the recoverability
and the complexity.

We also observe from Fig. 4 that with most values of θ,
the actual recoverability is much more than θ, suggesting that
there is still room to further reduce the complexity. The reason
is that we only change the coding scheme when θ is larger
than some threshold in Line 2 of Alg. 1, making the coding
scheme less flexible to the change of θ. Hence, we present
another construction below where the coding scheme can be
adjusted with a finer granularity.

V. STOCHASTIC CONSTRUCTION

In the static construction, we choose the number of uncoded
subtasks encoded into a coded subtask purely based on the rate
between |Nc(n, u

′, c)| and |Nc(n, u, c)|, u′ = 1, . . . , u. Hence,
when θ is not increased to the next rate, the coding scheme
remains unchanged. In this section, we propose a different
method where a coded subtask is encoded from uncoded
subtask more stochastically, which eventually achieves the
tradeoff between recoverability and the complexity with a finer
granularity.

Algorithm 2 The stochastic construction of the sequence-aware
coding with θ-recoverability.

1: C = ⌈θun⌉
2: for j = 1, . . . , c do
3: for i = 1, . . . , n do
4: P = ∅
5: while |P | ≤ C do
6: ρ is a random number between 0 and 1

7: ui,j = min
{
u′
∣∣∣ |Nc(n,u

′,c)|
|Nc(n,u,c)| ≥ ρ

}
8: for i′ = 1, . . . , ui,j do
9: if there exists a random integer j′, 1 ≤ j′ ≤ n,

such that (i′, j′) /∈ P then
10: P = P ∪ {(i′, j′)}
11: encode Ãi,j with an MDS code from {Ai,j |(i, j) ∈

P}

This stochastic construction is given in Alg. 2, where θ is
not just an indicator of the recoverability, but also that of the
complexity of the coding scheme. Specifically, each coded
subtask should be encoded from ⌈θun⌉ uncoded subtasks in

principle. Such ⌈θun⌉ uncoded subtasks, however, should not
be chosen upwards as in the static construction. Instead, we
choose such uncoded subtasks stochastically, according to their
chance to be used, i.e., |Nc(n,u

′,c)|
|Nc(n,u,c)| .

0.00 0.25 0.50 0.75 1.00
θ

0.0

0.2

0.4

0.6

0.8

1.0

ac
tu

al
re

co
ve

ra
bi

lit
y

(a) before extension

0.00 0.25 0.50 0.75 1.00
θ

0.00

0.25

0.50

0.75

1.00

ac
tu

al
re

co
ve

ra
bi

lit
y

0

5

10

15

20

av
er

ag
e

co
m

pl
ex

ity

(b) after extension

Fig. 5: The actual recoverability and average complexity of the
stochastic constructions with n = 5, u = 4, c = 3, α = 100,
and β = 1000.

We illustrate the actual recoverability of this construction
in Fig. 5a. As the stochastic nature of the construction, the
actual recoverability varies one after another, and thus we
repeat the construct α = 100 times, measure their actual
recoverability with β = 1000 tests, and eventually obtain
the average recoverability. Fig. 5a hence illustrates the mean,
maximum, and minimum of the actual recoverability with θ
between 0 and 1. We can see that the average curve becomes
smoother than the static construction. Moreover, the variety
of the actual recoverability in such α cases allows us to find
the case whose recoverability is even closer to θ. From this
observation, we extend the stochastic construction by choosing
the best coding scheme among all α cases. In particular, by
evaluating the recoverability from β tests, we pick up the
one with its recoverability closest to θ. We show the actual
recoverability in Fig. 5b which becomes very close to θ. The
average distance between the actual recoverability and θ is
reduced from 0.116 (in Fig. 4) to 0.058. Similarly, we also
measure the average complexity of coded subtasks, whose
distance from θun is also reduced from 3.05 to 1.06.

VI. MATRIX-MATRIX MULTIPLICATION

We now extend the sequence-aware coding to matrix-matrix
multiplication. Assume that we need to compute A · B, and
both A and B are two large matrices. The un uncoded

subtasks can then be constructed by splitting A into

A1

...
An

and

[
B1 · · · Bu

]
, and then we have Ci,j = Ai · Bj . We

now apply the static and stochastic constructions above to
matrix-matrix multiplication.

We can directly extend the static construction to matrix-
matrix multiplication. Similar to Alg. 1, after getting uj ,
we can let C̃i′,j′ =

(∑n
i=1 Aix

i
i′,j′

)
·
(∑uj

j=1 Bjx
jn
i′,j′

)
=∑n

i=1

∑uj

j=1 AiBjx
jn+i
i′,j′ =

∑n
i=1

∑uj

j=1 Ci,jx
jn+i
i′,j′ . The value

of xi′,j′ among all coded subtasks should be unique.

On the other hand, uncoded subtasks encoded into a coded
subtask are randomly chosen in the stochastic construction.
However, in the coded subtask of matrix-matrix multiplication,
they cannot be chosen purely randomly. Specifically, if we
encode C̃i,j as

(∑
i∈Pi′,j′

Aix
i
i′,j′

)
·
(∑

j∈Qi′,j′
Bjx

jn
i′,j′

)
=∑

i∈Pi′,j′

∑
j∈Qi′,j′

Ci,jx
jn+i
i′,j′ , the number of uncoded sub-

tasks inside must be |Pi′,j′ | · |Qi′,j′ |, which cannot be an
arbitrary integer. Therefore, we need to change Line 8 – Line 11
in Alg. 2. After getting ui,j , we let Qi′,j′ = {1, . . . , ui,j} and
Pi′,j′ be a random subset of {1, . . . , n} with

⌈
N
ui,j

⌉
elements.

0.00 0.25 0.50 0.75 1.00
θ

0.00

0.25

0.50

0.75

1.00

ac
tu

al
re

co
ve

ra
bi

lit
y

0

5

10

15

20

av
er

ag
e

co
m

pl
ex

ity

(a) static construction

0.00 0.25 0.50 0.75 1.00
θ

0.00

0.25

0.50

0.75

1.00

ac
tu

al
re

co
ve

ra
bi

lit
y

0

5

10

15

20

av
er

ag
e

co
m

pl
ex

ity

(b) stochastic construction

Fig. 6: The actual recoverability and average complexity
of the static and stochastic constructions for matrix-matrix
multiplication with n = 5, u = 4, c = 3, α = 100, and
β = 1000.

From Fig. 6a, we can see that the static construction
maintains almost the same performance as in Fig. 4, and the
performance of the stochastic construction becomes different,
especially when θ > 0.8. It is because when n = 5 and u = 4,
there are 20 uncoded subtasks. With θ > 0.8, there need to be
more than 16 subtasks. As u = 4, the size of Pi′,j′ must be 5,
leaving the construction with no choice but being equivalent
as global MDS codes.

0.25 0.5 0.75 1
θ

0

2

4

6

ti
m

e
(s

ec
.)

(a) encoding

static

stochastic

0.25 0.5 0.75 1
θ

0

5

10

ti
m

e
(s

ec
.)

(b) computation

static

stochastic

0.25 0.5 0.75 1
θ

0

2

4

6

8
ti

m
e

(s
ec

.)

(c) decoding

static

stochastic

Fig. 7: The time of encoding, computation, and decoding in
the matrix-matrix multiplication with n = 10, u = 10, and
c = 3.

We also implement matrix-matrix multiplication with the
static and stochastic constructions using mpi4py. We multiply
two matrices of size 3000×3000 on a local cluster with n = 10
workers. Each worker runs u = 10 uncoded subtasks and c = 4
coded subtasks. To simulate stragglers, we add random delays
on each subtask following an exponential distribution exp(1

0.2).
We measure the time of encoding, computation, and decoding
by running the job 50 times, with different values of θ. We
choose the values of θ between 0.25 and 1. When θ = 1, the

scheme becomes the same as global MDS codes. We present
the results in Fig. 7.

With θ = 1, the time of encoding and decoding is 52.2%
of the whole job. We can see from Fig. 7b that the value of
θ does not affect the computation time, but encoding time
and decoding time significantly. Fig. 7a shows that the static
construction can save the encoding time by up to 28.0% and
the stochastic construction can save it by up to 37.5%. Again,
it shows that the encoding complexity can be more precisely
controlled by θ in the stochastic construction. Similarly, we
can see in Fig. 7c that the decoding time can be saved by up
to 45.0% with the static construction and up to 70.6% with
the stochastic construction.

VII. CONCLUSIONS

We propose coding schemes for matrix multiplication that
leverage the results on stragglers to lower the computation
time and meanwhile save the complexities of encoding and
decoding. This is achieved by taking into account the order
of subtasks in the code construction. The proposed coding
schemes offer θ-recoverability, enabling an arbitrary tradeoff
between recoverability and complexity. Our evaluation shows
that, in comparison to global MDS codes, our coding schemes
do not impact computation time, but considerably reduce the
time required for encoding and decoding.

REFERENCES

[1] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding Up Distributed Machine Learning Using Codes,” IEEE
Transactions on Information Theory, vol. 64, no. 3, pp. 1514–1529,
2017.

[2] M. H. Qasem, A. A. Sarhan, R. Qaddoura, and B. A. Mahafzah, “Matrix
multiplication of big data using MapReduce: A review,” in 2017 2nd
International Conference on the Applications of Information Technology
in Developing Renewable Energy Processes & Systems (IT-DREPS), Dec.
2017, pp. 1–6.

[3] H. Zhou, J. Dong, J. Cheng, W. Dong, C. Huang, Y. Shen, Q. Zhang,
M. Gu, C. Qian, H. Chen, Z. Ruan, and X. Zhang, “Photonic matrix
multiplication lights up photonic accelerator and beyond,” Light: Science
& Applications, vol. 11, no. 1, p. 30, Feb. 2022.

[4] I. Palacios, M. Medina, and J. Moreno, “Matrix Multiplication on Digital
Signal Processors and Hierarchical Memory Systems,” in Computer
Science: Research and Applications, R. Baeza-Yates and U. Manber, Eds.
Boston, MA: Springer US, 1992, pp. 473–483.

[5] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, no. 2, pp. 74–80, 2013.

[6] J.-C. Bolot, “End-to-end packet delay and loss behavior in the internet,”
in Conference Proceedings on Communications Architectures, Protocols
and Applications, ser. SIGCOMM ’93. New York, NY, USA: Association
for Computing Machinery, Oct. 1993, pp. 289–298.

[7] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
Coding: Avoiding Stragglers in Distributed Learning,” in International
Conference on Machine Learning. PMLR, 2017, pp. 3368–3376.

[8] N. B. Shah, K. Lee, and K. Ramchandran, “When do redundant requests
reduce latency?” IEEE Transactions on Communications, vol. 64, no. 2,
pp. 715–722, 2016.

[9] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective
straggler mitigation: Attack of the clones,” in 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2013, pp.
185–198.

[10] Z. Qiu and J. F. Pérez, “Evaluating replication for parallel jobs: An
efficient approach,” IEEE Transactions on Parallel and Distributed
Systems, vol. 27, no. 8, pp. 2288–2302, 2016.

[11] D. Wang, G. Joshi, and G. Wornell, “Efficient task replication for fast
response times in parallel computation,” ACM SIGMETRICS Performance
Evaluation Review, vol. 42, no. 1, pp. 599–600, 2014.

[12] K. Lee, R. Pedarsani, and K. Ramchandran, “On scheduling redundant
requests with cancellation overheads,” IEEE/ACM Transactions on
Networking, vol. 25, no. 2, pp. 1279–1290, 2017.

[13] K. Narra, Z. Lin, M. Kiamari, S. Avestimehr, and M. Annavaram,
“Distributed Matrix Multiplication Using Speed Adaptive Coding,” arXiv
preprint arXiv:1904.07098, 2019.

[14] N. Ferdinand, B. Gharachorloo, and S. C. Draper, “Anytime exploitation
of stragglers in synchronous stochastic gradient descent,” in IEEE Inter-
national Conference on Machine Learning and Applications (ICMLA),
2018.

[15] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial codes:
An optimal design for high-dimensional coded matrix multiplication,” in
Advances in Neural Information Processing Systems (NIPS), 2017.

[16] ——, “Straggler mitigation in distributed matrix multiplication: Funda-
mental limits and optimal coding,” IEEE Transactions on Information
Theory, vol. 66, no. 3, pp. 1920–1933, 2020.

[17] P. Soto, J. Li, and X. Fan, “Dual entangled polynomial code: Three-
dimensional coding for distributed matrix multiplication,” in International
Conference on Machine Learning. PMLR, 2019, pp. 5937–5945.

[18] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chintalapati, and
R. Yao, “Gray failure: The achilles’ heel of cloud-scale systems,” in
USENIX Conference on Hot Topics in Operating Systems (HotOS), 2017.

[19] X. Fan, P. Soto, X. Zhong, D. Xi, Y. Wang, and J. Li, “Leveraging
Stragglers in Coded Computing with Heterogeneous Servers,” in 2020
IEEE/ACM 28th International Symposium on Quality of Service (IWQoS).
Hang Zhou, China: IEEE, Jun. 2020, pp. 1–10.

[20] S. Kiani, N. Ferdinand, and S. C. Draper, “Exploitation of stragglers in
coded computation,” in IEEE International Symposium on Information
Theory (ISIT). IEEE, 2018, pp. 1988–1992.

[21] A. B. Das, L. Tang, and A. Ramamoorthy, “C3LES: Codes for Coded
Computation that Leverage Stragglers,” in IEEE Information Theory
Workshop (ITW). IEEE, 2018, pp. 1–5.

[22] N. Ferdinand and S. C. Draper, “Hierarchical coded computation,” in
IEEE International Symposium on Information Theory (ISIT). IEEE,
2018, pp. 1620–1624.

[23] S. Li, S. M. M. Kalan, Q. Yu, M. Soltanolkotabi, and A. S. Avestimehr,
“Polynomially coded regression: Optimal straggler mitigation via data
encoding,” arXiv preprint arXiv:1805.09934, 2018.

[24] A. Ramamoorthy, L. Tang, and P. O. Vontobel, “Universally decodable
matrices for distributed matrix-vector multiplication,” in IEEE Inter-
national Symposium on Information Theory (ISIT). IEEE, 2019, pp.
1777–1781.

[25] S. Kiani, N. Ferdinand, and S. C. Draper, “Hierarchical coded matrix
multiplication,” in 16th Canadian Workshop on Information Theory
(CWIT). IEEE, 2019, pp. 1–6.

[26] E. Ozfatura, S. Ulukus, and D. Gündüz, “Distributed gradient descent
with coded partial gradient computations,” in ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2019, pp. 3492–3496.

[27] Y. Sun, J. Zhao, S. Zhou, and D. Gunduz, “Heterogeneous coded compu-
tation across heterogeneous workers,” in IEEE Global Communications
Conference (GLOBECOM). IEEE, 2019, pp. 1–6.

[28] D. Kim, H. Park, and J. Choi, “Optimal load allocation for coded
distributed computation in heterogeneous clusters,” arXiv preprint
arXiv:1904.09496, 2019.

[29] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded
computation over heterogeneous clusters,” IEEE Transactions on Infor-
mation Theory, vol. 65, no. 7, pp. 4227–4242, 2019.

[30] K. G. Narra, Z. Lin, M. Kiamari, S. Avestimehr, and M. Annavaram,
“Slack squeeze coded computing for adaptive straggler mitigation,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2019, pp. 1–16.

[31] E. Ozfatura, D. Gündüz, and S. Ulukus, “Speeding up distributed gradient
descent by utilizing non-persistent stragglers,” in IEEE International
Symposium on Information Theory (ISIT). IEEE, 2019, pp. 2729–2733.

[32] Y. Yang, M. Interlandi, P. Grover, S. Kar, S. Amizadeh, and M. Weimer,
“Coded elastic computing,” in IEEE International Symposium on Infor-
mation Theory (ISIT). IEEE, 2019, pp. 2654–2658.

[33] K. T. Kim, C. Joe-Wong, and M. Chiang, “Coded edge computing,” in
IEEE International Conference on Computer Communications (INFO-
COM). IEEE, 2020, pp. 237–246.

[34] X. Fan, P. Soto, Y. Zou, X. Su, and J. Li, “Sequence-Aware Coding
for Leveraging Stragglers in Coded Matrix Multiplication,” in IEEE
International Conference on Communications (ICC), 2023.

