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Abstract—Matrix multiplication is a foundational building
block in various data-intensive workloads. With the fast-
increasing sizes of workloads, it is common to split the job of
matrix multiplication into multiple tasks and execute them on
different servers in parallel. However, stragglers which perform
slower than other servers are inevitable in distributed computing.
Running coded tasks can tolerate the same number of stragglers
with much fewer servers compared to replicating tasks on
multiple servers.

Although stragglers only partially complete their tasks, they
can also be utilized toward a faster completion of the job,
by uploading the results of sub-tasks split from each task.
Existing designs utilizing partially completed tasks assume that
all sub-tasks have an equal probability of being incomplete and
require all input data to generate coded sub-tasks. However, not
any arbitrary placement of incomplete sub-tasks is valid when
sub-tasks are executed sequentially. If we only consider valid
placements of incomplete sub-tasks, each coded sub-tasks can
be encoded from much less input data, significantly saving the
encoding complexity. In this paper, we introduce a new coding
scheme called Sequence-Aware Coding (SAC), which exploits
only valid placements of incomplete sub-tasks to reduce the
encoding complexity while still leveraging the results of sub-tasks
on stragglers.

I. INTRODUCTION

Matrix multiplication is a foundational building block in
numerous algorithms for machine learning and data analytics
that process large volumes of data. With the fast-increasing
sizes of datasets and complexities of models, the size of matrix
multiplication also grows quickly. Therefore, it is challenging
for one server to perform matrix multiplication when the input
matrices are massive. To solve this challenge, it is common
practice to split the job of matrix multiplication into multiple
tasks which multiply submatrices of input matrices and execute
them on different servers called workers in parallel.

However, it is well known that in distributed computing,
some workers, known as stragglers, may perform slower than
others and become the bottleneck of the job due to various
reasons such as hardware issues, resource contention, and
load imbalance [1]–[4]. In Amazon EC2, the performance of
stragglers can be 2-5x slower than regular workers [2], [3].

One common method to mitigate the effects of stragglers
is to launch redundant tasks on additional workers [5]–[11].
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However, we need to run replicated tasks on r + 1 workers
to tolerate any r stragglers. On the contrary, coded tasks [2],
[12], [13] have been proposed to get the results by decoding
the results from other workers except stragglers. Compared to
replicated tasks, coded tasks can tolerate the same number of
stragglers with fewer additional tasks.

In most existing coding schemes for matrix multiplication,
results from stragglers are typically discarded. As a result,
computational resources on stragglers are wasted. Therefore,
there have been coding schemes and techniques proposed to
leverage partially completed results from stragglers [10], [14]–
[30]. The common idea of these works is further partitioning
each task into sub-tasks. We hence call sub-tasks directly
partitioned from an uncoded task uncoded sub-tasks, which
can then be encoded into coded sub-tasks to tolerate stragglers.
As a toy example of matrix-vector multiplication Ax in Fig. 1,
we assume that the job of Ax is originally divided into
three tasks A1x, A2x, and A3x, running in a master-worker
architecture. To leverage resources from stragglers, the tasks
are further partitioned into two uncoded sub-tasks A1

ix and
A2

ix, i = 1, 2, 3, and uncoded sub-tasks are placed at the top
of each worker. The three coded sub-tasks P 1

i x, i = 1, 2, 3,
can be encoded from all uncoded sub-tasks or a subset of
them, and we place them at the bottom of each worker. We
assume that sub-tasks on each worker are executed from top to
bottom, unless terminated by the master. Each worker can then
upload the results of completed sub-tasks sequentially instead
of the whole task.

Existing coding schemes that exploit partial results from
workers assume that all sub-tasks have an equal probability
of being incomplete. Therefore, coded sub-tasks are encoded
from all uncoded sub-tasks. Nevertheless, if the execution
order of sub-tasks is fixed, each sub-tasks won’t have an equal

Fig. 1: Toy examples with a valid and an invalid placement of
incomplete uncoded sub-tasks.



probability of being incomplete. In other words, many arbitrary
placements of incomplete uncoded sub-tasks don’t exist in
practice. Fig. 1a shows an example that the job is completed
with one uncoded sub-task incomplete similarly. Therefore, P 1

3

needs to be encoded from A2
1 such that A2

1x can be recovered
by decoding. In fact, A2

i , i = 1, 2, 3, should all be encoded
into P 1

j , j = 1, 2, 3, as any one of them can be incomplete.
However, as shown in Fig. 1b, it may not always be necessary
to encode A1

i into P 1
j , i, j = 1, 2, 3, especially when the order

of execution is determined. For example, if there is only one
uncoded sub-task incomplete, the only possible placement is
A2

ix, i = 1, 2, 3. If A1
ix is incomplete, i = 1, 2, 3, all of

its consecutive sub-tasks must also be incomplete. Therefore,
the placement of incomplete uncoded sub-tasks in Fig. 1b
is invalid, and encoding A1

i into P 1
j may not be necessary,

i, j = 1, 2, 3.

Fig. 2: A comparison between C3LES and SAC. The black
arrow shows how coded sub-tasks are encoded from uncoded
sub-tasks. The red arrow shows the execution order of sub-
tasks.

Following the observation above, we can reduce the number
of uncoded sub-tasks needed in encoding, while enabling the
coded sub-tasks to recover the result from valid placements
of incomplete uncoded sub-tasks only. Therefore, we propose
Sequence-Aware Coding (SAC), which respects the temporal
sequence in which sub-tasks are executed. Instead of using all
uncoded sub-tasks to generate coded sub-tasks, SAC can adjust
the encoding locality and encode each coded sub-task from a
subset of all uncoded sub-tasks. We use Fig. 2 to illustrate our
proposed coding scheme, SAC, and compare it with C3LES in
which P 1

i is encoded from all uncoded sub-tasks, i = 1, 2, 3.
Assuming that there is at most one uncoded sub-task incom-
plete, SAC and C3LES can both recover Ax after receiving any
six sub-tasks. However, SAC saves the encoding complexity
by 50% as each coded sub-task is encoded from three uncoded
sub-tasks only. Our experiments demonstrate that compared to
global MDS codes (GLO) [15] and C3LES [16], SAC can save
job completion time by up to 80.3% thanks to its low encoding
and decoding complexities.

II. SYSTEM MODEL

In this paper, we consider a distributed computing job with
one master and w workers. The objective of the job is to
compute Ax.1 The job will be executed on w workers and
Worker i executes the task that multiplies Ai with x, i =

1We use matrix-vector multiplication for simplicity as only A needs to be
encoded in this case. SAC can be extended to matrix-matrix multiplication.

Fig. 3: The system model of SAC. The black arrow shows
how coded sub-tasks are encoded from uncoded sub-tasks.

1, . . . , w. In order to exploit partial results of tasks, we further
partition each of A1, . . . , Aw into p sub-matrices, denoted as
A1

i , A
2
i , . . . , A

p
i , i = 1, . . . , w. We place Aj

1, A
j
2, . . . , A

j
w on

the jth row of uncoded sub-tasks, j = 1, . . . , p. On each
worker, we also generate t coded sub-tasks P 1

i , P
2
i , . . . , P

t
i ,

i = 1, . . . , w, and place them below uncoded sub-tasks. We
similarly place P j

1 , P
j
2 , . . . , P

j
w, j = 1, . . . , t, on the jth row

of coded sub-tasks. The rows of uncoded and coded sub-tasks
of the job are illustrated in Fig. 3. We assume that each task
starts from uncoded sub-tasks and continues to run coded sub-
tasks afterwards. The result of each sub-task is sent to the
master when it is complete. The execution can be terminated
by the master when results received from the master suffice to
decode. Specifically, we use (i, j) to denote the ith sub-task
performed by the jth worker, such that (i, j) corresponds to
Ai

jx on Worker j if i ≤ p, and P i−p
j x otherwise.

Since sub-tasks are executed sequentially, we then have the
following observation.

Observation 1. Worker j performs its computation in the
order of (1, j), (2, j), . . . , (p + t, j). In particular, if (i, j) is
completed, (i′, j) must also be completed if 1 ≤ i′ < i.

As the coded sub-tasks need to be encoded from uncoded
sub-tasks, we define ∆ = (∆1, . . . ,∆t) where ∆i is the set
of rows of uncoded sub-tasks where P i

j , j = 1, . . . , w, (i.e.,
sub-tasks in the ith row of coded sub-tasks) are encoded from,
1 ≤ i ≤ t. Hence, we have ∆i ⊂ {1, 2, . . . , p}. For example,
if P 1

1 is encoded from the pth uncoded sub-task row, i.e.,
Ap

1, . . . , A
p
w, we have ∆1 = {p}. If all coded sub-tasks are

encoded from all uncoded sub-tasks, e.g., in GLO and C3LES,
we have ∆i = {1, . . . , p}

When the master receives enough sub-tasks for decoding,
we assume that there are ϵ uncoded sub-tasks incomplete,
which is also the number of received coded sub-tasks for
decoding. We then define the sequence property below.

Definition 1. (Sequence property.) We can recover ϵ in-
complete uncoded sub-tasks in any valid placement using ϵ
received coded sub-tasks in any valid placement. The master



can receive more than ϵ coded sub-tasks, but only the first
ϵ coded sub-tasks received can be used for decoding. A
placement is valid if the order of sub-tasks does not violate
Observation 1.

The sequence property also defines a different way to
mitigate stragglers, as conventionally coding schemes are
constructed to mitigate a certain number of stragglers. With the
sequence property, we can focus on the impact of stragglers
instead of the number of stragglers, and hence it becomes
possible to consider the sequence of sub-tasks which have
different probabilities of being incomplete.

The objective of SAC is to construct ∆ to achieve the
sequence property while optimizing the encoding complexity
by minimizing

∑t
i=1 |∆i|. To achieve this objective, the

parameters of SAC include the number of workers w, the
number of rows of uncoded sub-tasks p, the number of rows
of coded sub-tasks t, and the number of incomplete uncoded
sub-tasks ϵ.

We introduce two methods to construct ∆ in this paper.
The first method (SAC-I) works for the general choice of
(w, p, t, ϵ). The second method (SAC-II) can generate ∆ when
p = ϵ = w − 1, t ≥ 2, and w ≥ 1, which may construct ∆
with

∑t
i=1 |∆i| being lower.

With ∆ given by SAC-I or SAC-II, we use ∆i to generate
P i
j in the ith row of coded sub-tasks, 1 ≤ j ≤ w. Note that

∆i is a set, and thus we let qi = |∆i| and δi,j as the jth

entry in ∆i. Coded sub-tasks in this row are then encoded
with a systematic (wqi + w,wqi) MDS code. Assume the
MDS code has a generator matrix G = (gi,j)(wqi+w)×wqi

with an identity matrix in the top wqi rows, we have P i
j =∑qi

l=1

∑w
m=1 gj,(l−1)w+mA

δi,l
m . Note that the generator matrix

of MDS codes for different rows of coded sub-tasks should be
constructed differently, which is not a challenge when entries
in the input are real numbers.

SAC is constructed such that we can start decoding when the
number of incomplete uncoded sub-tasks in rows covered by
∆ is ϵ, the number of received coded sub-tasks is greater than
or equal to ϵ, and all uncoded sub-tasks in the rows that are not
covered by ∆ are received. Since we have ϵ coded sub-tasks
completed, the corresponding linear system has ϵ equations, in
which we have ϵ coded sub-tasks on one side, and ϵ incomplete
uncoded sub-tasks and wp - ϵ received uncoded sub-tasks on
the other side. Since all generator matrices for each ∆i are
unique, this linear system is solvable.

We introduce the details of SAC-I and SAC-II in the rest
of this paper.

III. CONSTRUCTING ∆ WITH SAC-I

As there is a large number of combinations of (w, p, t, ϵ),
it is challenging to find a general formula to describe the
construction of the optimal ∆ for all these combinations. For
example, we manually find the optimal ∆s for some examples
of (w, p, t, ϵ) in Fig. 4. Therefore, we perform simulations to
generate all valid placements of incomplete uncoded sub-tasks
and complete coded sub-tasks, and test all possible designs of

(w, p, t, ϵ) ∆1 ∆2

(5, 3, 2, 3) {1, 2, 3} {3}
(5, 3, 2, 4) {2, 3} {1, 3}
(5, 3, 2, 5) {1, 2} {3}
(5, 4, 2, 4) {1, 2, 3, 4} {1, 4}
(5, 4, 2, 5) {1, 2, 3} {4}
(5, 4, 2, 6) {2, 3} {1, 2, 4}

Fig. 4: The optimal ∆s for some examples of (w, p, t, ϵ).

∆ for a range of (w, p, t, ϵ). Based on the empirical results, we
develop a search-based algorithm to construct ∆ for a general
value of (w, p, t, ϵ).

The value of (w, p, t, ϵ) is not entirely arbitrary, with the
following requirement.

Theorem 1. The values of w, p, t, and ϵ must satisfy ⌈ ϵ
p⌉+⌈ ϵ

t ⌉
≤ w, 1 ≤ w, 1 ≤ p, 1 ≤ t, and 0 ≤ ϵ.

Proof. The ϵ incomplete uncoded sub-tasks can be placed
on at least ⌈ ϵ

p⌉ workers, and similarly the ϵ received coded
sub-tasks can be placed on at least ⌈ ϵ

t ⌉ workers. A worker
can either have incomplete uncoded sub-tasks or received
coded sub-tasks before decoding, as uncoded sub-tasks are
always executed beforehand. Therefore, the two numbers
added should never be larger than w.

By rewriting the inequality in Theorem 1, we get 0 ≤ ϵ ≤
t(w − ⌈ ϵ

p⌉). This reveals that when w, p, and t are fixed, the
maximum value of ϵ is t(w − ⌈ ϵ

p⌉).
We use a list Luncoded = [n1, n2, n3, · · · , np] to describe

how the ϵ incomplete uncoded sub-tasks are distributed on the
w workers, where ni denotes the number of incomplete un-
coded sub-tasks in the ith row of uncoded sub-tasks. Similarly,
we maintain another list Lcoded = [m1,m2,m3, · · · ,mt],
where mi represents the number of received coded sub-
tasks for decoding in the ith row of coded sub-tasks. By
Observation 1, if an uncoded sub-task Ai

j is incomplete, all
the following uncoded sub-tasks on this worker must also be
incomplete. Therefore, the number of incomplete uncoded sub-
tasks in the ith row of uncoded sub-tasks, 1 ≤ i ≤ p, must be
larger than or equal to that of its previous rows, i.e., 0 ≤ n1

≤ n2 ≤ n3 · · · ≤ np ≤ ϵ. By Observation 1 again, if a coded
sub-task P i

j is received, all of its previous coded sub-tasks in
this worker must have been received, i.e., 0 ≤ mt ≤ mt−1

≤ mt−2 ≤ · · · ≤ m1 ≤ ϵ. In addition,
∑t

i=1 mi = ϵ and∑p
i=1 ni = ϵ according to the sequence property.
The combinations that are hardest to cover are those where

the incomplete uncoded sub-tasks are in the smallest number
of workers, i.e., ⌈ ϵ

p⌉ workers, and the received coded sub-
tasks are in the smallest number of workers, i.e., ⌈ ϵ

t ⌉ workers.
As long as we can cover the combinations that are hardest to
cover, we can successfully cover all combinations.

Therefore, given (w, p, t, ϵ), we first generate Luncoded

where all incomplete uncoded sub-tasks are in ⌈ ϵ
p⌉ workers

and all possible Lcoded corresponding to each Luncoded. We
input the newly generated combinations of Luncoded and
Lcoded to Alg. 1. We name ∆ generated in this step as ∆1.



Alg. 1 uses Luncoded and Lcoded as its input and generates
one instance of ∆ as its output. In Alg. 1 we always use the
sub-tasks from the rows of received coded sub-tasks with the
highest row index to cover the incomplete uncoded sub-tasks
with the lowest row index. If we use one coded sub-task in
the ith row of coded sub-tasks to cover one uncoded sub-task
in the jth row of uncoded sub-tasks, we add j to ∆i.

Algorithm 1 Construction of ∆ from Luncoded and Lcoded

Input Luncoded and Lcoded

Output ∆
1: pointer = 1
2: keep increasing pointer until Luncoded[pointer] ̸= 0
3: while pointer ≤ p do
4: find the rows with received coded sub-tasks and put their

row indexes to the array Row RcvdCodedSub in a descending
order

5: UncodedSubToCover = Luncoded[pointer]
6: for i in Row RcvdCodedSub do
7: if UncodedSubToCover > Lcoded[i] then
8: UncodedSubToCover -= Lcoded[i]
9: Lcoded[i] = 0

10: append pointer to ∆i

11: else
12: Lcoded[i] -= UncodedSubToCover
13: UncodedSubToCover = 0
14: append pointer to ∆i

15: pointer += 1
16: break
17: end if
18: end for
19: end while

We then generate another version of ∆ as ∆2. In this step,
we generate Lcoded such that all received coded sub-tasks are
in ⌈ ϵ

t ⌉ workers and all possible Luncoded corresponding to
each Lcoded. We also input the newly generated combinations
of Luncoded and Lcoded to Alg. 1.

At last, we compute the union of ∆i in ∆1 and ∆i in ∆2,
and get the final result of ∆.

IV. CONSTRUCTING ∆ WITH SAC-II

SAC-I provides a construction of ∆ for general values of
(w, p, t, ϵ). However, there is still room to improve ∆’s design
with certain values of (w, p, t, ϵ). In this section, we present
SAC-II, a different method to generate ∆. Using SAC-II. We
can generate ∆ when p = ϵ = w − 1, t ≥ 2, and w ≥ 1.
Different from SAC-I, we can theoretically prove that SAC-II
is optimal when p = ϵ = w − 1, t = 2, and w ≥ 3.

A. Construction

In SAC-II, we simply let ∆i = {1, 2, 3, · · · , p}, i < t, and
∆t = {p− ⌊p

t ⌋+ 1, p− ⌊p
t ⌋+ 2, p− ⌊p

t ⌋+ 3, · · · , p}, when
p = ϵ = w − 1, t ≥ 2, and w ≥ 1.

Theorem 2. The design of SAC-II can achieve the sequence
property.

Proof. Since 0 ≤ n1 · · · ≤ np ≤ ϵ = p, and
∑p

i ni = p, we can
divide the rows of incomplete uncoded sub-tasks into t equal
parts, and the sum of ni for rows with higher indexes will be

larger than those with lower indexes. Therefore, n1+· · ·+n⌊ p
t ⌋

≤ · · · ≤ np−3⌊ p
t ⌋+1 + · · · + np−2⌊ p

t ⌋ ≤ np−2⌊ p
t ⌋+1 + · · · +

np−⌊ p
t ⌋ ≤ np−⌊ p

t ⌋+1 + · · · + np. After that, we can get p ≤
(np−⌊ p

t ⌋+1 + · · ·+ np)t and ⌊p
t ⌋ ≤ np−⌊ p

t ⌋+1 + · · ·+ np.
Moreover, for received coded sub-tasks, we have∑t
i=1 mi = ϵ = p, and 0 ≤ mt ≤ · · · ≤ m1 ≤ ϵ = p. Hence,

mtt ≤ p, and then mt ≤ ⌊p
t ⌋ as t > 0. Then we have mt

≤ np−⌊ p
t ⌋+1 + · · · + np. We can always use received coded

sub-tasks on the tth row of coded sub-tasks to recover the
same number of incomplete uncoded sub-tasks. After that,
since ∆i = {1, 2, 3, · · · , p}, i < t, which means that we
use all uncoded sub-tasks to generate coded sub-tasks in the
ith row, i < t, the remaining incomplete uncoded sub-tasks
can be decoded by the rest coded sub-tasks in the ith row
of coded sub-tasks, i < t. Thus, we can guarantee that there
won’t be any extra unused coded sub-tasks, and we can solve
the corresponding linear system.

Hence, SAC-II can achieve the sequence property.

B. Proof of optimality
We now prove that ∆ constructed by SAC-II achieves the

optimal encoding complexity when p = w−1 = ϵ, t = 2, and
w ≥ 3. The encoding complexity is measured by

∑t
i=1 |∆i| =

|∆1|+ |∆2|.

Theorem 3. Given any construction of ∆ (that satisfies the
sequence property) when t = 2, w ≥ 3, and p = w − 1 = ϵ,
|∆1|+ |∆2| ≥ p+ ⌊p

2⌋.

Proof. To determine the design of ∆1, we first need to con-
sider one special placement of the ϵ incomplete uncoded sub-
tasks and ϵ received coded sub-tasks, i.e., all the ϵ incomplete
uncoded sub-tasks are on one worker, and all the ϵ received
coded sub-tasks are in the first row of coded sub-tasks. In
this case, each row of incomplete uncoded sub-tasks has one
incomplete uncoded sub-task, and all the received coded sub-
tasks are in the first row of coded sub-tasks. Then, if the
number of elements in ∆1 is smaller than p, there will be
some incomplete uncoded sub-tasks uncovered. Therefore, ∆1

must be {1, 2, . . . , p}, which means that the first row of coded
sub-tasks needs to cover all the rows of uncoded sub-tasks.

To design ∆2 with the minimum size, we need to consider
m1 + m2 = ϵ = p and m1 ≥ m2. We can then get
m2 ≤ ⌊p

2⌋. Hence, when each row of uncoded sub-tasks has
one incomplete uncoded sub-task, we need to design ∆2 with
at least ⌊p

2⌋ elements to make sure all the received coded sub-
tasks in the second row of coded sub-tasks are used to recover
the same number of incomplete uncoded sub-tasks. Since
∆1 = {1, 2, . . . , p}, we can use the remaining received coded
sub-tasks to recover the rest of the incomplete uncoded sub-
tasks and achieve the sequence property. Thus, the minimum
number of elements in ∆2 is ⌊p

2⌋.
The proof is then complete by combining the two cases

above.

By Theorem 3, we know that ∆ constructed by SAC-II
achieves the optimal encoding complexity since the equality
is achieved.



V. EVALUATION

We use mpi4py to implement a distributed matrix-matrix
multiplication job AX in a master-worker architecture. The
master partitions and encodes the matrix A only. The master
then sends encoded matrices to corresponding workers and
also broadcasts X to all workers. Each worker performs
the matrix multiplication in each sub-task using the NumPy
library. When a worker finishes one sub-task, it sends the result
back to the master. Meanwhile, the master continuously checks
if the result of any completed sub-task is sent back until the
received results are sufficient for decoding. If so, the master
stops receiving the results of sub-tasks and starts decoding.
We run the experiments2 on 17 virtual machines on Google
Cloud, including one of type c2-standard-60 as the master
and 16 of type c2d-standard-2 as workers. We measure the
performance of the following schemes in our experiments:
GLO, C3LES, SAC-I, and SAC-II. We repeat each experiment
20 times and present the average result.

In the experiments, we measure the time elapsed in different
parts of the job, including encoding time in which the master
spends to generate all sub-tasks, computation time in which
tasks are executed until all sub-tasks are complete or the
master terminates the execution, decoding time in which the
master decodes received results, and job completion time
which is the time spent to complete the whole job including
encoding, computation, and decoding.

In the first experiment, we run three jobs with different sizes
of input matrices as shown in Fig. 5. We choose (w, p, t, ϵ) =
(16, 15, 2, 7) for SAC-I. We compare it with GLO and C3LES
with the same value of (w, p, t).

A X
SQUARE × SQUARE 4800 × 4800 4800 × 4800

THIN × FAT 240 × 500000 500000× 240
FAT × THIN 9120 × 200 200 × 9120

Fig. 5: Sizes of matrix multiplication in all jobs.

As shown in Fig. 6, compared to GLO, SAC-I saves job
completion time by 53.4% in SQUARE × SQUARE, 35.7%
in THIN × FAT, and 80.3% in FAT × THIN. The saving of
job completion time is mainly from encoding and decoding
time.

As for encoding time, we first observe that
∑t

i=1 |∆i|
in SAC-I’s ∆ is 53.3% fewer than GLO, which encodes
coded sub-tasks from all uncoded sub-tasks. Therefore, SAC-
I’s encoding time is 45.4%, 44.9%, and 39.1% lower than
GLO in SQUARE × SQUARE, THIN × FAT, and FAT ×
THIN, respectively. The code construction of SAC-I costs
only 0.01 seconds. In terms of decoding time, compared to
GLO, SAC-I saves the decoding time by 91.5% in SQUARE
× SQUARE, 87.9% in THIN × FAT, and 94.1% in FAT ×
THIN, respectively. The reason is that fewer sub-tasks are
required in SAC-I’s decoding process. The task computation

2The source code is at https://github.com/YuchunZou/Sequence-Aware-
Coding.

Fig. 6: Job completion time, encoding time, task computa-
tion time, and decoding time of SAC-I with (w, p, t, ϵ) =
(16, 15, 2, 7), GLO, and C3LES with the same (w, p, t).

time of SAC-I and GLO is almost the same because they
eventually also receive similar numbers of sub-tasks, showing
that SAC-I does not compromise decodability even with lower
complexity. When we compare SAC-I with C3LES, SAC-I
saves job completion time by 28.4% in SQUARE × SQUARE,
34.8% in THIN × FAT, and 24.2% in FAT × THIN.

Fig. 7: Job completion time, encoding time, task computation
time, and decoding time comparison of SAC-I, SAC-II, GLO,
and C3LES, where (w, p, t) = (16, 15, 2) and ϵ = 15 for SAC-
I and SAC-II.



In the second experiment, we demonstrate that SAC-II
optimizes the design of ∆ generated by SAC-I and further
saves job completion time. We set (w, p, t, ϵ) = (16, 15, 2, 15)
which satisfies the requirement of SAC-II. We compare SAC-
I and SAC-II with GLO and C3LES with the same (w, p, t).
The sizes of A and X are the same as SQUARE × SQUARE.
Compared to GLO, SAC-I saves job completion time by
21.0%, and SAC-II further saves 11.1% in addition.

As shown in Fig. 7, SAC-II saves the encoding time by
23.7%. The reason is that SAC-II uses the least number of
uncoded sub-tasks for encoding and thus enjoys the lowest
encoding complexity. The task computation time of GLO,
C3LES, SAC-I, and SAC-II are very similar since they even-
tually receive similar numbers of sub-tasks before decoding.
Moreover, SAC-II achieves the lowest decoding time, which
is 68.1% lower than GLO and 13.0% lower than C3LES, as
SAC-II performs the fewest operations of multiplication during
decoding.

VI. CONCLUSIONS

Existing coding frameworks leverage partially completed
tasks from stragglers by generating coded sub-tasks from
all uncoded sub-tasks. In this paper, we propose a novel
coding framework, termed SAC with two methods SAC-I
and SAC-II, constructed following the previously ignored fact
that sub-tasks are executed in order. As a result, SAC can
achieve lower encoding and decoding complexities while still
leveraging partial results from stragglers without compromise.
We demonstrate experimentally that SAC can reduce job
completion time and also outperform other state-of-the-art
coding frameworks for exploiting stragglers.
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