
On Arbitrary Ignorance of Stragglers
with Gradient Coding

Xian Su∗, Brian Sukhnandan†, Jun Li‡
∗Graduate Center, City University of New York

†Arch
‡Queens College and Graduate Center, City University of New York

Abstract—Gradient methods, such as gradient descent, are
widely deployed to train optimization-based models in machine
learning. To train such models on a large dataset, the dataset
is commonly split into multiple partitions which are trained
on different workers. In order to tolerate stragglers, existing
techniques either use gradient coding (GC) to recover the full
gradients from a certain number of workers or recover gradients
partially from an arbitrary number of workers. In this paper,
we propose ignore-straggler gradient coding (IS-GC) that allows
GC to tolerate an arbitrary number of stragglers. Compared
to approximated gradient descent, IS-GC can recover more
gradients when there is the same number of stragglers. We design
a graph-based model to decode coded gradients from an arbitrary
number of stragglers, and prove that it can maximize the recovery
of gradients. We apply IS-GC on fractional repetition (FR)
and cyclic repetition (CR), two representative dataset placement
schemes of GC. We also propose hybrid repetition (HR) that
generalizes over FR and CR and achieves a flexible trade-off
between FR and CR. With extensive experiments, we demonstrate
that IS-GC can flexibly tolerate an arbitrary number of stragglers
and achieve a low completion time of training.

I. INTRODUCTION

Gradient methods, e.g., stochastic gradient descent (SGD),
include a large family of algorithms that solve optimization
problems by iteratively updating the parameters from gradients
and are widely used in training machine-learning models.
Running gradient methods on a single server, however, can
often be prohibitively slow with a large dataset, as the limited
capacity of one server could become the bottleneck. Therefore,
it has been common to train optimization-based models in a
distributed infrastructure, where gradients on different partitions
of the dataset are evaluated on different servers in parallel.
Specifically, in distributed gradient descent, a dataset D can be
equally split into n partitions, i.e., D1, . . . , Dn. Then the full
gradients g can be computed as the sum of gradients evaluated
on each partition, i.e.,

∑n
i=1 gi. In practice, the n partitions

are stored on n servers called workers, which also compute the
gradients on corresponding dataset partitions. Another server
called master receives gi from each worker and then computes
g to update parameters. Fig. 1(a) illustrates an example of
distributed gradient descent where the dataset is split into 4
partitions, and the master expects to obtain

∑4
i=1 gi to proceed

to the next step. This process will repeat until parameters

This work is partially supported by the Google Cloud Research Credits
program.

D1

master

D2 D3 D4

D1

master

D2 D3 D4

D1

master

D2 D3 D4

D1D2 D3 D4

D1D2 D3 D4

g1 g2 g3 g4

g1+g2 g3+g4

g1+g2+g3+g4

W1 W2 W3 W4 W1 W2 W3 W4

W1 W2 W3 W4

g1+g2+g3+g4

g1+g2+g3+g4

(a) synchronous SGD
(s=0, c=1)

(b) gradient coding
(s=1, c=2)

(d) ignore-straggler
gradient coding (s=2, c=2)

-g1+g2
2/3∙g4+2g1g3+1/3∙g4

D1

master

D2 D3 D4

g1
g3

W1 W2 W3 W4

g1+g3

(c) ignore-straggler SGD
(s=2, c=1)

Fig. 1: Examples of techniques for tolerating stragglers in
distributed SGD, with n = 4 workers.

converge. When workers compute the gradients from mini-
batches, the algorithm is known as synchronous SGD.

However, it is well known that workers may become strag-
glers in a distributed infrastructure, resulting in a significant
delay in the computation and/or communication of gradients [1],
[2]. In order to get g, the master needs to wait for the gradients
from all the n workers. Therefore, even one straggler may
significantly delay the progress of the training.

To tolerate s stragglers in synchronous SGD, gradient coding
(GC) was proposed by encoding gradients of c dataset partitions
on each worker [1]. As shown in Fig. 1(b), while we still split
D into 4 partitions, each of them is stored on two of the four
workers. While each worker can now compute the gradients
on two partitions, i.e., c = 2, worker Wi will not send the
gradients on two partitions but their linear combinations. For
instance, the worker W1 sends −g1+g2 to the master. Thus, the
master does not need to wait for the coded gradients from all
the 4 workers but only 3 workers, making it possible to tolerate
one straggler among the 4 workers, i.e., s = 1. In this example,
(−g1 + g2) + (g3 +

1
3g4) + (23g4 + 2g1) = g1 + · · ·+ g4 = g.

GC can tolerate at most c− 1 stragglers with the gradients
fully recovered [1]. However, it also leads to restrictions in two
ways. First, when there are more stragglers, the master cannot
recover any gradients. Second, if the number of stragglers is
less than c− 1, the additional coded gradients become useless

toward the recovery of gradients. Such two restrictions are due
to the synchronous nature of GC, which can be easily resolved
by asynchronous SGD.

Asynchronous SGD allows the master to update parameters
immediately after receiving gradients from any single worker.
However, asynchronous SGD has worse performance guaran-
tees than synchronous SGD in terms of its error rate [3],
[4] because of the high variance in the gradients leading
to heavy fluctuations in the objective function. Therefore, a
simple variant of SGD was proposed to achieve a trade-off
between synchronous SGD and asynchronous SGD, which we
name as Ignore-Straggler SGD, or simply IS-SGD [5]. With
IS-SGD, the master can choose to wait for gradients from
an arbitrary number of workers, ignoring the rest of the s
stragglers. Fig. 1(c) illustrates an example of IS-SGD with
s = 2, where g is partially recovered as g1 + g3. IS-SGD
achieves a trade-off between the number of stragglers and the
error in convergence [4], [6]–[9]. However, if some worker
experiences severe or consistently lower performance, IS-SGD
will still make the training biased toward the other dataset
partitions on non-straggling workers.

From the discussion above, we can see there is no solution
so far that can enjoy the advantages of GC and IS-SGD at
the same time, i.e., recovering gradients more completely and
tolerating stragglers more flexibly. The solution we propose
in this paper is Ignore-Straggler Gradient Coding (IS-GC),
combining the benefits of IS-SGD and GC. With IS-GC, the
master can flexibly determine the number of workers to wait
for and recover more gradients than IS-SGD. As shown in
Fig. 1(d), through deploying IS-GC, the master can now recover
g1 + g2 + g3 + g4 with two available workers. Compared to
the IS-SGD in Fig. 1(c), IS-GC fully recovers g. Meanwhile,
compared to the GC, IS-GC releases the constraint of the
number of tolerable stragglers, which is c− 1 = 1 in Fig. 1(b),
for a full recovery of gradients. In other words, IS-GC may
flexibly tolerate more stragglers than GC.

In this paper, we present the coding frameworks of IS-GC
for two representative schemes of data placements, fractional
repetition (FR) and cyclic repetition (CR). To maximize
the recovery of gradients, we analyze the conflict property
among workers in each scheme of data placement, since
coded gradients from different workers may be conflicted. For
example, in Fig. 1(d), W1 is in conflict with W2 since both of
them provide g2. Therefore, we propose a model of conflict
graph that describes the conflicts among all workers. Based
on the conflict graph, we deliberately design the decoding
algorithms that are proven to maximize the recovery of
gradients with an arbitrary number of available workers.

We demonstrate that FR recovers more gradients while CR
allows more flexible choices of parameters. Hence, we further
propose hybrid repetition (HR) by generalizing FR and CR
and achieving the benefits of both. In other words, HR can
recover a similar number of gradients as FR while allowing
flexible choices of parameters as CR.

II. RELATED WORK

To mitigate stragglers in distributed computing based on
gradient methods, Harlap et al. proposed FlexRR which detects
stragglers and avoids stragglers by dynamic workload re-
assignment [10]. On the other hand, techniques based on
replication have been proposed where the same task can be
replicated on multiple workers [11]. As replication significantly
increases the resource overhead, coding-based methods were
proposed where the dataset is encoded to create coded tasks and
the master decodes the results from a subset of coded tasks [2],
[12]–[15]. However, such methods can only be applied on
linear operations in the model.

To apply coding to tasks with general models, gradient
coding (GC) was proposed where coding is not applied on the
dataset but on the gradients. Random coding [1], cyclic MDS
codes [16], and Reed-Solomon codes [17] have been applied
to construct GC. Ye and Abbe [18] proposed communication-
efficient GC where coding is applied not only among gradients
but also within elements of gradient vectors, to reduce the
amount of data transferred from workers to the master. While
conventionally gradients on multiple dataset partitions are
encoded into one single vector with GC, gradients can also be
encoded into multiple vectors in order to utilize the resources
on stragglers [19]–[21].

GC was originally designed for synchronous SGD, which
recovers

∑n
i=1 gi. Hence, GC can only mitigate a limited

number of stragglers, and requires more dataset partitions on
each worker to tolerate more stragglers. In practice, however,
gradients often do not need to be recovered exactly, and
hence IS-SGD (also known as k-sync SGD or fastest-k SGD)
was proposed where gradients on stragglers can be simply
disregarded [4], [22], [23]. In order to recover more gradients
with more stragglers s or lower storage overhead c, approximate
GC is designed to partially recover the gradients with gradient
coding [5], [20], [24]–[26]. However, such designs trade off
the computation load for a lower l2 error, making it difficult to
analyze and understand its convergence property and error rate.
More importantly, they are all based on synchronous training,
and thus lack the flexibility to tolerate an arbitrary number of
stragglers. In a more closely related work [27], approximate
gradient coding is constructed to recover the sum of gradients
from at least δn dataset partitions, δ ∈ (0, 1). However,
its construction is constrained to specific combinations of
parameters only, and the number of stragglers is still limited.
IS-GC enjoys a very high level of flexibility, with a more
complete recovery of gradients than IS-SGD. We also prove
its convergence property in this paper.

III. BACKGROUND: GRADIENT CODING

Consider a dataset D with samples {(xi, yi)}di=1, xi ∈ Rp
and yi ∈ R. Assume that we aim to train a model by
solving an optimization problem in the form as β∗ =
argminβ∈Rp

∑d
i=1 f(β;xi, yi). To solve this optimization

problem, gradient methods will iteratively update the model
from step to step. For example, in the t-th step, β(t+1) =

β(t) − ηg(t) = β(t) − η
∑n
i=1 g

(t)
i in synchronous SGD.

The original coding scheme of GC was designed for
synchronous SGD, where the master will need to recover∑n
i=1 gi. To tolerate stragglers, the dataset D is split into

n partitions D1, . . . , Dn and placed on n workers, and each
worker stores c dataset partitions. To place dataset partitions
on the n workers, there are two popular placement schemes:
fractional repetition (FR) and cyclic repetition (CR).

D1 D1 D3 D3 D1 D2 D3 D4

D4D2 D2 D4 D1D2 D3 D4

W1 W2 W3 W4 W1 W2 W3 W4
(a) fractional repetition

(s=1, c=2)
(b) cyclic repetition

(s=1, c=2)

master
g1+g2+g3+g4

g 1+
g 2 g3 +g4

master
g1+g2+g3+g4

-g 1+
g 2

2/3∙g4 +2g1

g3 +1/3∙g4g 1+
g 2 g3 +g4

-g
2+

g 3

Fig. 2: Examples of FR and CR with n = 4.
FR requires c|n, so the n workers can be split into n/c

groups. In the i-th group, the set of dataset partitions on each
worker is {D(i−1)c+1, D(i−1)c+2, . . . , Dic}. Fig. 2(a) shows
an example of FR with n = 4 and c = 2, where W1 and W2

have D1 and D2, and W3 and W4 have D3 and D4.
CR, however, does not require c|n. With CR, the dataset par-

titions are cyclically placed on each worker. On the i-th worker
Wi, the set of its dataset partitions are {D((j−1) mod n)+1|j =
i, . . . , i + c − 1}, i = 1, . . . , n. For example, if n = 4 and
s = 1, the placements of dataset partitions on the 4 workers
are illustrated in Fig. 2(b).

With a placement scheme, we then need to consider how
each worker should encode its gradients as a linear combination.
As for FR, each worker can simply add up all gradients, as
shown in Fig. 2(a). Hence, workers in the same group will
send the same coded gradients to the master. Since there are c
workers in each group, we can recover the sum of gradients in
all groups when there are no more than s = c− 1 stragglers.

As for CR, the construction of its coding scheme is more
non-intuitive, so we only demonstrate one example in Fig. 2(b).
In this example, among the coded gradients received from the
four workers, the master can recover g when there is no more
than c − 1 = 1 straggler. Fig. 1(c) shows the same example
with W2 as a straggler. Due to the space limit, we omit the
details of the code construction, which can be found in [1].

The above examples of GC are designed to recover g exactly,
with no more than s stragglers. Although there exist schemes
of approximate GC, they either have different convergence
properties, or still require an upper bound of the number of
stragglers. In the rest of this paper, we will present a framework
that maximizes the recovery of g with an arbitrary number of
stragglers. In other words, the master can recover g (partially)
with any number of workers.

IV. CODING FRAMEWORK AND FRACTIONAL REPETITION

With IS-GC, gradients g can be recovered as ĝ =
∑
i∈I gi,

where I ⊆ {1, . . . , n}, with an arbitrary number of stragglers.
In particular, we aim to maximize |I|. With the same number

of stragglers, the value of I will be larger than IS-SGD as c
can be greater than 1. Note that the value of |I| may vary in
different steps as the number of stragglers also varies. We
aim to guarantee that for any partition, the chance of its
gradients appearing in ĝ equals that of any other partition, if the
performance of each worker is homogeneous and independent.

We first present the general coding framework of IS-GC,
which is independent of the placement scheme. The decoding
algorithms which recover ĝ in IS-GC are different with different
placement schemes. Here, we use FR as an example to
demonstrate the decoding algorithm, thanks to its simplicity.
The decoding algorithms for CR and HR are much more
challenging, which are presented in Sec. V and Sec. VI.

As mentioned in Sec. III, besides the placement, the coding
scheme in GC also determines how workers encode their
gradients. To maintain the flexibility to tolerate an arbitrary
number of stragglers, we ask each worker to simply add up
gradients computed on each dataset partition, regardless of the
placement scheme. In this way, the coded gradients received
from different workers can also be added up so that we can
disregard gradients from any workers. Otherwise, if gradients
are encoded with non-1 coefficients on each worker, they have
to be decoded with coded gradients from some other worker(s),
making it impossible to recover ĝ with an arbitrary subset of
workers. For example, in Fig. 2(b), there is no way to decode the
coded gradients into ĝ from less than 3 workers. We use Di,j to
denote the j-th dataset partitions on Worker Wi, j = 1, . . . , c,
i = 1, . . . , n. With FR, Di,j = Db(i−1)/ccc+j . We also use W
to represent the set of all workers, i.e., W = {W1, . . . ,Wn}.

In every step, each worker computes gradients from their
dataset partitions and uploads the sum of gradients to the master.
The master receives gradients from n− s workers, denoted as
W ′, in each step. Hence, W ′ ⊆ W and |W ′| = n − s. The
master needs to decode such gradients by running a Decode()
function, returning I so that the gradients can be recovered
as ĝ =

∑
i∈I gi. This function varies with different placement

schemes. Note that the number of s can be arbitrarily chosen in
each step. For example, we can set a deadline in each step, and
the master only accepts gradients received before the deadline.
Hence, the number of stragglers may change with time. We
may also choose to receive gradients from fewer workers at the
beginning to save time, and then from more workers afterwards
until convergence to make parameters converge more quickly.

In FR, as dataset partitions are duplicated in each of the
n/c groups, we can only have gradients from one worker
in each group added up. Hence, we only need to count the
number of groups that have at least one worker, and choose one
worker randomly from each of such groups. We summarize this
method in Alg. 1, whose complexity is O(|W ′|). Moreover, if
the possibility of any worker’s gradients being received by the
master is equal to each other, we can see that ∀i ∈ {1, . . . , n},
the chance of i ∈ I equals to each other, too.

Algorithm 1 The Decode() function for FR.

1: for i = 0, . . . , n/c− 1 do
2: Ii =W ′ ∩ {ic+ j|j = 1, . . . , c}
3: Let vi be one random element in Ii
4: end for
5: I = {vi|i = 0, . . . , n/c− 1}

D1 D2 D3 D4

D1D2 D3 D4

W1 W2 W3 W4
(a) cyclic repetition

with confliction

master
g1+g2 or g4+g1

g 1+
g 2 g4 +g1

D1 D2 D3 D4

D1D2 D3 D4

W1 W2 W3 W4
(b) cyclic repetition
without confliction

master
g1+g2+g3+g4

g 1+
g 2

g3 +g4

Fig. 3: Comparisons of decoding coded gradients with CR.

V. CYCLIC REPETITION

A. Conflict Graph

As the FR scheme requires that c|n, CR offers better
flexibility. Compared to FR, the decoding algorithm for CR is
not as straightforward. As shown in Fig. 3(a), if the master has
received g1 + g2 from W1, it cannot be added up with g4 + g1
on W4, or g2 + g3 on W3. However, if the master receives
coded gradients from W2 and W4 after W1, we will disregard
g1 + g2 so that g2 + g3 and g4 + g1 can be added up to be∑4
i=1 gi. In other words, decoding coded gradients by their

received sequence greedily is not optimal.
Given the placement of dataset partitions {Di,j |i =

1, . . . , n, j = 1, . . . , c}, we construct a conflict graph G =
(W,E) reflecting if coded gradients on two workers con-
flict with each other, i.e., if they can be added up. Hence,
W = {Wi|i = 1, . . . , n}, and (Wi,Wj) ∈ E if and only if
coded gradients on Wi and Wj cannot be added up. Fig. 4,
we show two examples of the conflict graphs of FR and CR.
We also prove in Theorem 1 that the conflict graph of CR is a
circulant graph.

W1

W4

W2

W3

W1

W4

W2

W3

(a) fractional repetition (b) cyclic repetition

Fig. 4: Conflict graphs of the FR and CR schemes with n =
k = 4 and c = 2.

Theorem 1. The conflict graph of CR is a circulant graph
C1,...,c−1
n .

Proof. As Di,j = D((i+j−1) mod n)+1 in CR, j = 1, . . . , c, we
can obtain the conflict graph with general values of n and c.
Coded gradients on a worker Wi can conflict with those on up
to 2(c− 1) other workers. We place all workers sequentially
on a circle, and define d(x, y) is the minimal distance between

Wx and Wy on the circle, either clockwise or counterclockwise.
Hence, d(x, y) = min(|x−y|, n−|x−y|) < c. If d(x, y) < c,
the gradients on Wx and Wy cannot be added up. The reason
is that if d(x, y) < c, we can find z1 and z2 such that Dx,z1 =
Dy,z2 , which is proved as follows.

We first assume that 0 < |x − y| < c. Without loss of
generality (since we can always switch the order of two
workers), we can further assume x < y, i.e., 0 < y − x < c.
Then we can let z1 = c and z2 = c− (y − x) ∈ (0, c). Thus
x+ z1 = y + z2 and Dx,z1 = Dy,z2 .

We then assume that 0 < n−|x−y| < c, and further assume
that x > y without loss of generality. Hence, we have n− c <
x− y < n. If we let z1 = c and z2 = c− (n−x+ y) ∈ (0, c),
then we also have x+ z1 = y + z2.

On the other hand, if d(x, y) ≥ c, i.e., c ≤ |x−y| ≤ n−c. If
we assume that there exist z1 and z2, such that Dx,z1 = Dy,z2 ,
then we either have x+z1 = y+z2, or x+z1 = (y+z2−1) mod
n+1. In the first case, we have |z2− z1| = |x−y| ≥ c, which
is impossible since 1 ≤ z1, z2 ≤ c. In the second case, since
(y+ z2−1) mod n+1 = y+ z2−1−n+1 = y+ z2−n, we
have |z2 − z1 − n| = |x− y| ≤ n− c. This is also impossible
since 1− c− n ≤ z2 − z1 − n ≤ c− 1− n.

Based on the graph model above, we can see that the
conflict model directly reflects how we can add up received
coded gradients, i.e., when they are from workers that are not
connected in the conflict graph. In other words, when we receive
coded gradients from W ′, we can then construct an induced
subgraph of G, denoted as G[W ′]. In order to maximize
|I|, we can see that it is equivalent to finding the maximum
independent set of G[W ′], as there are no two vertices in an
independent set adjacent to each other. Since each worker has c
dataset partitions, we will get the maximum number of |I| from
the maximum independent set, which equals to α(G[W ′]) · c
where α(G[W ′]) denotes the independence number of G[W ′].
Although solving the maximum independent set problem in
general is well known to be strongly NP-hard [28], there exists
special graphs where their maximum independent set can be
found with a polynomial-time complexity [29]–[32]. Below,
we demonstrate that the maximum independent set in CR can
be found with a linear time complexity.

B. Decoding Algorithm

Based on the analysis above, we now present the DECODE()
function for CR in Alg. 2. In general, we search for the maximal
independent set greedily, starting from a random vertex of the
conflict graph G (Line 4-12). Theorem 2 proves that a maximal
independent set can always be found. However, such a greedy
search does not guarantee to find a maximum independent set.
In Fig. 4(b), for example, assume that we receive gradients
from workers W1, W2, and W3. Starting from W1 we can find
a maximum independent set {W1,W3}, while we can only
have a maximal independent set {W2} if the search starts from
W2. Therefore, we choose the starting vertex clockwise by at
most c vertices (Line 3), and at least one maximal independent
set must be a maximum independent set (see Theorem 3).

Theorem 2. The greedy search in Line 4-12 can always find
a maximal independent set.

Proof. Assuming that we can find a maximal independent set
of size m by starting the search from Wi, we prove that any
independent set containing Wi is not larger than m. We write
the vertices in the maximal independent set as {Wi1 , . . . ,Wim}
where i1 = i. Meanwhile, d(Wil ,Wil+1

) ≥ c, l = 1, . . . ,m−1.
We assume that there exists an independent set that includes
more than m vertices, i.e., {Wj1 = Wi, . . . ,Wj′m

}, m′ > m.
Since i1 = j1, we have d(i1, i2) ≤ d(j1, j2), or Wi2 will have
no chance to be chosen in Line 10. Furthermore, if d(j2, j3) ≥
c, then d(i2, j3) ≥ d(j2, j3) ≥ c. Hence, d(i1, i3) ≤ d(j1, j3),
or Wi3 will still not be chosen in Line 10. We keep applying
the previous step, so d(i1, il) ≤ d(j1, jl), l = 2, . . . ,m. Since
d(jm, jm+1) ≥ c, we also have d(im, jm+1) ≥ d(jm, jm+1) ≥
c, so we can at least apply Line 10 once more, even if the
maximal independent set has been found by Alg. 2. Therefore,
any independent set that includes Wi will have no more than
m vertices.

Theorem 3. One maximum independent set exists among at
most c maximal independent sets found by the greedy search
in Alg. 2.

Proof. We can see in Line 3, the greedy search will be
performed from at most c starting vertices. Hence, we prove
that among vertices in Ŵ =W ′∩{(u+v−1) mod n+1|v =
0, . . . , c−1}, there exists a maximum independent set covering
at least one of such vertices.

If there is only one vertex in the maximum independent set,
the proof is trivial as we can choose any vertex which will
become a maximum independent set.

Algorithm 2 Decode() function for the CR scheme.

1: I = ∅
2: Let u be a random vertex in W ′

3: for i ∈ W ′ ∩ {(u+ v − 1) mod n + 1|v = 0, . . . , c − 1}
do

4: I ′ = {i}
5: i0 = i
6: while j = 1, . . . , n− 1 do
7: next = (i0 + j − 1) mod +1
8: if next ∈W ′ and d(i0, next) ≥ c and d(next, i) ≥ c

then
9: i0 = next

10: I ′ = I ′ ∪ {next}
11: end if
12: end while
13: if |I ′| > |I| then
14: I = I ′

15: end if
16: end for

As Alg. 2 can find at least one maximum independent set
by at most c searches, and the complexity of the greedy search
is O(|W ′|/c), the complexity of Alg. 2 is O(|W ′|). We can

further save its complexity by starting the search from isolated
vertices. Moreover, as vertices are isolated independently with
an equal chance, gradients on each worker still have an equal
chance to be added into ĝ eventually.

C. Tradeoff between FR and CR

Despite FR and CR sharing the same upper and lower bounds
of α(G[W ′]), we also find that α(G[W ′]) in FR is expected
to be higher than CR.

Considering an instance of the CR scheme with given n and
c, we denote its conflict graph as GCR(n,c) = (W,ECR(n,c)).
Similarly, We use GFR(n,c) = (W,EFR(n,c)) to denote the
conflict graph of the FR scheme with given n and c, c|n.
Although CR offers higher flexibility in terms of the value of
c, we show that FR can recover more gradients by Theorem 4.

Theorem 4. EFR(n,c) ⊂ ECR(n,c) ⊂ · · · ⊂ ECR(n,n).

Proof. If (Wi,Wj) is an edge in GCR(n,c), we have d(i, j) <
c < c+1, so it is also an edge in GCR(n,c+1), i.e., ECR(n,c) ⊂
ECR(n,c+1).

Given an edge (Wi,Wj) in GFR(n,c), where we assume
i < j without loss of generality, there exists a positive integer
l such that c(l − 1) + 1 ≤ i < j ≤ cl. Hence, d(i, j) ≤
j− i ≤ c, and thus (Wi,Wj) is also an edge in GCR(n,c), i.e.,
EFR(n,c) ⊂ ECR(n,c). Summarizing the two properties above,
we have EFR(n,c) ⊂ ECR(n,c) ⊂ · · · ⊂ ECR(n,n).

When the master receives coded gradients from workers
in W ′ where W ′ ⊆ W . From the property above, we
know that GFR(n,c)[W

′] is also a subgraph of GCR(n,c)[W
′],

and thus also has a higher independence number, i.e.,
α(GFR(n,c)[W

′]) > α(GCR(n,c)[W
′]). In other words, with

coded gradients from any workers, we can expect that FR can
recover more gradients than CR.

VI. HYBRID REPETITION

From the analysis above, we can see that FR limits the
flexible choices of c, especially when n does not have many
factors. Meanwhile, CR can support an arbitrary value of c,
as long as c ≤ n, but the recovered gradients are proved to
be fewer than FR. Hence, in this section, we propose hybrid
repetition (HR), a new placement scheme, that enjoys both
CR’s flexibility and FR’s better recovery of gradients.

A. Intuition and a Special Case

In order to achieve the desirable properties of both FR and
CR, we need a placement scheme where the values of c can
be arbitrarily chosen, and meanwhile the tradeoff between FR
and CR can be flexibly achieved. We first present an example
of the HR scheme to demonstrate its intuition. In Fig. 5(a), we
illustrate an example of the FR scheme with n = 4 and c = 2,
where the 4 workers are split into 2 groups, and the 4 dataset
partitions are also split disjointedly into the 2 groups. If we
look at such two groups, we can see that the placement of the
two dataset partitions can also be considered as a special case
of the CR scheme with n = c = 2. As shown in Fig. 5(b), the
placement of dataset partitions in the two groups follows the CR

scheme. As we only change the sequences of dataset partitions
on all workers, the conflict graphs of the two placements are
also the same.

D1 D1 D3 D3 D1 D2 D3 D4

D4D2 D2 D4 D3D2 D1 D4

W1 W2 W3 W4 W1 W2 W3 W4
(a) fractional repetition (c=2) (b) hybrid repetition (c=2)

Group 1 Group 2 Group 1 Group 2

Fig. 5: Examples of hybrid repetition.

Following this intuition, we first present a special case of
the HR scheme. Given n and c, we assume that there exists
an integer g such that g|n, and the n workers are equally split
into g groups. The n dataset partitions are also equally split
into the g groups. In each group, we disjointly place n0 = n/g
dataset partitions where each worker stores c dataset partitions,
following the CR scheme, as shown in Fig. 6. The example
above corresponds to the case with g = 2. In this way, the
conflicts among workers are limited within each group.

Group g
DnD(g-1)n0+1

……
D(g-1)n0+c-1

W(g-1)n0+1 Wn

Group 1

…
.

D1

Dc

Dn0…
.

Dc-1

…
.

…
.

D(g-1)n0+c

… …

W1 Wn0

Fig. 6: The construction of the HR scheme.

Note that the value of g does not necessarily equal c. In the
HR scheme, we assume that g ≤ n/c (since the CR scheme
requires that c ≤ n0). In general, as dataset partitions are
disjoint in different groups, the HR scheme above can be
decoded group by group, and the decoding algorithm for CR
can be applied in each group.

As a special case, by Theorem 5 below, the decoding
algorithm can be simplified to be the same as that of FR.

Theorem 5. The conflict graph of HR is the same as GFR(n,n0)

when n0 ≤ 2c− 1.

Proof. Since the dataset partitions are disjointedly placed in
different groups, we only consider the conflict between workers
in the same group, as no workers in different groups can have
conflict. Since the dataset partitions in the same group are
placed following the CR scheme, its conflict graph is also
a circulant graph. Since each worker conflicts with 2(c − 1)
workers at most, when 2(c−1)+1 ≥ n0, each pair of workers
has a conflict. In other words, the conflict graph in each group
is a complete graph, and the conflict graph of all workers
becomes the same as that of an FR scheme where c = n0.

Moreover, when g = 1, we can also see from the construction
above becomes the same as CR. In fact, FR and CR are just
two extreme points in a spectrum of the placement of HR.
Below we further generalize HR which eventually achieves the
tradeoff between FR and CR.

B. Generalization

To generalize the placement above, we still assume that the
values of n and c are given, and there exists a positive integer
g such that g|n. The n workers are equally split into such g
groups. We illustrate the general construction in Fig. 7. We
denote the construction above as HR(n, n0, 0), as a special
case of the following general construction HR(n, c1, c2) where
c1 = n0 and c2 = 0.

D1

Dn0

Dn0D2

Dn0

D1

…
…

…

…
 …

…
 …

…
 …

Dn-n0+1

Dn

Dn
Dn-n0+2

Dn-1

Dn-n0+1

…
…

…

 …
 …

…
 …

…
 …… … … … … … …

Group 1 Group g

D1

Dc

D2
…

 …

Dn

Dc-1

D1

…
 …

… … … … … … … … … … … … … … … …

… … … … … … … … … … … … … … … …

… … … … … … … … … … … … … … … …
… … … … … … … … … … … … … … … …

C
R(

n,
 c

)
H

R(
n,

 n
0,

0)

H
R(
Q�
�c

1,
c 2

)

c1

c2

Fig. 7: An illustration of the general HR scheme.

As shown in Fig. 7, the placement in the general HR scheme
has two parts. The upper part is a placement of HR(n, n0, 0),
and the lower part is a placement of the CR scheme with
the given n and c. The actual placement of a HR(n, c1, c2)
placement is then a combination of such two parts, by choosing
the bottom c1 rows in HR(n, n0, 0) and the top c2 rows in the
CR scheme, where c1 + c2 = c. Since the placement becomes
a CR scheme when c1 = 0, we assume c1 > 0 below.

In particular, we can also prove that when n0 = c,
HR(n, c, 0) is equivalent to HR(n, c− 1, 1). From Fig. 7, we
can see that the first rows in the upper part and the lower part
are both from 1 to n. From HR(n, c, 0) to HR(n, c − 1, 1),
we remove the first row in the upper part and add the first
row in the lower part, and thus it does not change the dataset
partitions on each worker.

Theorem 6 below gives the range of n0 in HR. With its
help, we can further show in Theorem 7 that HR achieves a
tradeoff between the special case above and CR.

n0-c1+1

n0

1
2

c2

1

1 n0-c1

n0-c1 n0-1
n0n0-1

c2 n0n0-1 c2+n0-1n0+1

n0+1

n0… … … … …

2

… … … … … … … … … …

… … … … … … … …

… … … … … … … …

… … … … … … … … …

… … …

…
 …

…
 …

… …

…
 …

 …

… ..

…

…
 …

 …

c2

c2

n0-c1

n0-c1

Group 1

n0-c1+1

n0-c1+1
n0-1

n0-1

conflicts of W1
conflicts of Wn-c2+1
conflicts of Wn

Fig. 8: An illustration of placement in a group with HR.

Theorem 6. In HR(n, c1, c2), c ≤ n0 ≤ 2c− 1.

Proof. In order to guarantee that all workers in the same group
conflict with each other, the values of c, c1, and n0 should be

chosen such that c+ c1 ≥ n0. To prove this property, we only
need to take a look at the placement of any group, thanks to
the symmetry in the HR scheme. Without loss of generality,
we consider the first group in Fig. 8. For convenience, we
only show the subscripts of the dataset partitions, e.g., i in
Fig. 8 denotes the dataset partition Di. We can see that each
entry may conflict with entries on the same anti-diagonal.
Moreover, for entries between 1 and n, the entries that have
a conflict can go up from the right end back to the left end.
However, for other entries above n, they only appear in the
lower part corresponding to the CR scheme. Therefore, from
W1 to Wn0−c2+1, there are c1 + c2 − 1 = c− 1 workers that
have conflicts on its left, and the same number of workers on its
right. However, other workers have fewer workers conflicting
on its right. In the worst case, which is Wn0 , it only has c1
workers conflicting on its right. Hence, in each group, each
worker has at least c+c1−1 conflicting workers, so n0 ≤ c+c1.

Since c > c1, we can further have c > c1 ≥ n0 − c, and
hence n0 < 2c. Since n0 ≤ 2c− 1, each worker conflicts with
all other workers in the HR scheme (when c1 > 0). Also, as
c1 ≤ n0 in the upper part of the placement, we now get the
valid range of n0 as c ≤ n0 ≤ 2c− 1.

Theorem 7. EHR(n,c,0) ⊆ EHR(n,c−1,1) ⊆ · · · ⊆
EHR(n,n0−c,2c−n0)

Proof. As all workers in the same group are conflicting with
each other, we only need to analyze the conflict between
workers in different groups, which we name as outside
neighbors. Since g ≥ c, if two workers are not in the two
neighboring groups, they are not conflicting, as any dataset
partition may only have its replication at most c− 1 workers
away. Without loss of generality, we take a look at the first
two groups in Fig. 9.

n0+c2-1n0+1

…
 …

…

n0

n0

n0+1

n0+1
n0+1

n0+c2-1…

n0+c2-1

n0+c2-1…

…
 …

 …
 …

 …
 …

 …
 …

 …
 …

…
 …

 …
 …

 …
 …

 …
 …

 …
 …

Wn0+1 Wn0+c1+1Wn0+c-1Wn0
Wn0-c2+2

… … … … … …

2n0

2n0… … … … …

Group 1 Group 2

…
 …

… … … … …

… … … … … …

… … … … … … … … … … …

Fig. 9: An illustration of the conflict between two nearby
groups.

ou

ts
id

e
ne

ig
hb

or
s

Wn0+1

c-
1

Wn0+c1+1 Wn0+c

c 2
-1

0

Wn0+c-1

1

new/old

new

old

ou

ts
id

e
ne

ig
hb

or
s

Wn0
Wn0-c2+2

c-
1

0

old
new

c-
c 2

+1

Fig. 10: The intuition of the function of outside neighbors.

First, we consider the outside neighbors on the right of a
group and look at the outside neighbors of workers of Group
1 in Group 2. We can see that in Group 2, workers between
Wn0+1 and Wn0+c1+1 conflict with the c2− 1 workers on the
right in Group 1. Furthermore, workers between Wn0+c1+1 and
Wn0+c−1 have their numbers of outside neighbors decreasing
from c2 − 1 to 1.

On the other hand, we consider the outside neighbors on
the left of a group, and hence we look at workers in Group 1
as outside neighbors of workers in Group 2. Looking at the
bottom dataset partition between Wn0

and Wn0−c2+2, we can
see their replicas can reach at most c− 1 workers on the right,
and hence the number of outside neighbors decreases from
c− 1 to c− 1− (c2 − 1) = c− c2.

We show the number of outside neighbors as a function of
workers in Fig. 10. With a fixed c, we can move the HR schemes
between HR(n, c, 0) and HR(n, n0−c, 2c−n0) which becomes
HR(n, 0, c) when n0 = c. When we decrease the value of c1
(and increase the value of c2 simultaneously), we can see how
the two parts of the functions change in Fig. 10, and thus all
edges in the conflict graph of HR(n, c1, c2) are also edges in the
conflict graph of HR(n, c1−1, c2+1), i.e., the conflict graph of
HR(n, c1, c2) is a subgraph of HR(n, c1−1, c2+1). Therefore,
EHR(n,c,0) ⊆ EHR(n,c−1,1) ⊆ · · · ⊆ EHR(n,n0−c,2c−n0).

When n0 = c, we have EFR(n,c) = EHR(n,c,0)⊆ · · · ⊆
EHR(n,0,c) = ECR(n,c). Hence, HR can be seen as a general-
ization of FR and CR and achieve a tradeoff between them.

C. Decoding

When c2 = 0, the conflict graph of the HR scheme is the
same as the FR scheme with c = g. Hence, it can be decoded
with the same algorithm. We now consider the decoding
algorithm when c2 > 0, which can be modified from Alg. 2.

Algorithm 3 Decode() function for the HR scheme.

1: I = ∅
2: Let i be a random integer, i ∈ [0, g − 1], such that Ii =
W ′ ∩ {in0 + j|j = 1, . . . , n0} is not an empty set

3: for all i ∈ Ii do
4: I ′ = {i}
5: i0 = i
6: while j = 1, . . . , n− 1 do
7: next = (i0 + j − 1) mod +1
8: if next ∈W ′ and (not CONFLICT(i0, next)) and (not

CONFLICT(next, i)) then
9: i0 = next

10: I = I ∪ {next}
11: end if
12: end while
13: if |I ′| > |I| then
14: I = I ′

15: end if
16: end for

Algorithm 4 CONFLICT(i1, i2) function for the HR scheme.

1: g1 = b i1n0
c, g2 = b i2n0

c
2: if g1 = g2 then
3: return True
4: end if
5: if (g2 − g1) mod g = 1 then
6: j1 = i1 mod n0
7: if (j1 ≥ n0 − c2 + 1) and ((i2 − i1) mod n < c) then
8: return True
9: end if

10: end if
11: return False

Compared to Alg. 2, the decoding algorithm for HR in
Alg. 3 mainly has two differences. First, instead of starting the
greedy search from at most c vertices, we can easily limit the
starting vertices within any single group (Line 3 in Alg. 2 and
Line 2-3 in Alg. 3). We show in Theorem 8 that a maximum
independent set can be found that covers at least one such
vertex in such a group.

Theorem 8. ∀u ∈ [1, n], defining Ŵ as the set of workers
in W ′ that are in the same group, there exists a maximum
independent set covering at least one of such vertices in Ŵ .

Proof. We assume that there only exist maximum independent
sets without covering any vertex in Ŵ . We use the same
technique used in the proof of Theorem 3. Given any one of
such maximum independent sets, we can find the two nearest
vertices on the two sides of vertices in Ŵ , and we can remove
one of such vertices from the maximum independent set and
add the vertex that is nearest to it in Ŵ . Hence, we build a
maximum independent set that covers one vertex in Ŵ .

Second, in the greedy search, the criteria of conflict is not
just depending on the distance (Line 8 in Alg. 2 and Alg. 3).
The new criteria is defined in Alg. 4. Specifically, conflict
exists if two workers are in the same group, Moreover, when
they are in two nearby groups, there also exists conflict if a
worker has the same gradients as those on the other group. For
example, in Fig. 7, D1 appears in both Group 1 and Group n.
Theorem 9 demonstrates that Alg. 3 can always find a maximal
independent set. Similar to Alg. 2, as long as i in Line 3 is
randomly permutated, gradients on each worker have an equal
chance to be added into ĝ.

Theorem 9. A maximal independent set can be found by a
greedy algorithm in Alg. 3 and Alg. 4.

Proof. We still prove that if a maximal independent set exists,
we can use a greedy algorithm to find the same one or another
maximal independent set of larger size starting from any vertex
in the original one. The proof is based on an observation:
given two vertices u and v in W ′, if u proceeds v in the
clockwise direction, there exists no vertex w such that u and
w are conflicting but v and w are not.

Assume if w exists, we consider if w is in the same group
of u. If so, there exists no such a vertex v as all vertices in
the same group conflict with each other. Otherwise, we can
see, from Fig. 8, that there are only the c2 − 1 workers on
the right that can conflict with workers in the next group, as
c2 − 1 < c ≤ g, and thus w must be in the next group in the
clockwise direction. We can also see that the dataset partitions
that may cause conflicts come from the bottom right corner
in Fig. 8, which is a part of the CR scheme. Therefore, if
w and u are conflicting, w and v must also be conflicting.
Summarizing the two cases above, such a vertex w does not
exist. We then can extend Alg. 2 as the decoding algorithm for
the HR scheme, by only making two changes. First, in Line 3,
the greedy searches should start from all vertices in W ′ that
are in the same random group. Second, in Line 8, the conflict
between i0 and next and the conflict between next and i
should be identified differently, where the CONFLICT(i1, i2)
function returns true if i1 and i2 are conflicting.

VII. THEORETICAL ANALYSIS

In this section, we theoretically analyze the performance of
IS-GC. We first discuss the performance of decoding of IS-GC
on FR and CR, in terms of the recovered gradients, and then
analyze the convergence property of IS-GC.

A. Recovered Gradients

To analyze the performance of decoding, we consider a
question: what is the worst-case and best-case performance of
decoding when there are s stragglers? For convenience, we
define w = n − s, i.e., the number of available workers, or
|W ′|. Given w workers in W ′, we aim to find the upper and
lower bounds of α(G[W ′]). It is interesting to find that FR,
CR, and HR share the same bounds despite their different
placement and decoding algorithms.

Theorem 10. α(G[W ′]) ≥ min(dwc e, b
n
c c).

Proof. The value of α(G[W ′]) depends on the conflict among
workers. The conflict in FR is simple. Two workers are in
conflict if they are from the same group. With a general w,
the worst case of α(G[W ′]) should be obtained when the w
workers come from as few groups as possible, which is dwc e.
As c|n in the FR scheme, dwc e ≤

n
c = bnc c.

As for CR, there are no such obvious “groups” due to the
round-robin placement of dataset partitions. However, we can
still see that the worst case is when all workers in W ′ are
consecutive. Given w such consecutive workers, the first worker
will rule out the next c − 1 workers, the (c + 1)-th worker
will also rule out the next c− 1 ones, etc. Therefore, we can
also have at least dnc e workers in I . Moreover, as CR does not
require c|n, at most bnc c workers can have no conflict with
each other.

Finally, as the conflict in HR is between FR and CR, its
α(G[W ′]) has the same lower bound when FR and CR have
the same lower bound.

Theorem 11. α(G[W ′]) ≤ min(w, bnc c).

Proof. In FR and CR, the best case of α(G[W ′]) corresponds
to the case when all workers have conflict as least as possible,
or no conflict at all. Similar to the proof of Theorem 10, when
w ≤ bnc c, the w workers may have no conflict at all, either
in different groups in FR, or being far away from each other
in CR. All the w workers can then be in I , i.e., α(G[W ′]) =
w. When there are more workers, α(G[W ′]) is again limited
to the maximum number of workers that can be in I , i.e.,
α(G[W ′]) ≤ bnc c. Again, as FR and CR have the same upper
bound, the upper bound of HR is also the same.

B. Convergence Analysis

To obtain the convergence property in IS-GC, we make the
following assumptions for its loss function f(β;x, y).

Assumption 1. ∇f(β;x, y) is L-Lipschitz continuous such
that with L > 0 we have ||∇f(β1;x, y) −∇f(β2;x, y)||2 ≤
L||β1 − β2||2,∀β1, β2 ∈ Rp.

As stragglers may differ from step to step, α(G[W ′]) may
also vary in different steps. Hence, we define D

(t)
d as the

samples involved in the gradients after decoding in the t-th
step, such that |D(t)

d | = α(G[W ′]) · cdn .

Assumption 2. The decoded gradients are an unbiased
estimate of the true gradients: E

D
(t)
d

[g(βk, D
(t)
d)] =

1

|D(t)
d |

∑
i∈D(t)

d

∇f(β(k);xi, yi) =
1
d

∑d
i=1∇f(β(k);xi, yi) =

∇f(β(k)).

As FR and CR both guarantee that all data samples have the
same probability in the decoded gradients. Therefore, IS-GC
conforms to this assumption.

Assumption 3. We assume that the variance of the gradi-
ents joining the model update has an upper bound. Thus,
E
D

(t)
d

[||g(β(t), D
(t)
d)||2] ≤ σ2.

We now prove that the model will converge with IS-GC.

Theorem 12. In IS-GC, we have E
D

(t)
d

[f(β(t+1))] ≤ f(β(t))−

η|D(t)
d |||∇f(β(t))||2 + Lη2σ2|D(t)

d |
2

2 .

Proof sketch. By Assumption 1, ||∇f(β
(t+1))−∇f(β(t))||2
β(t+1)−β(t)||2

≤ L.
In other words, ∇2f(β(t)) ≤ L. By Taylor series, we can find
that f(β(t+1))−f(β(t)) ≤ f (1)(wk)||wk+1−wk||+L

2 ||w
k+1−

wk||2. We then take the expectation for the formula above. After
that, replace wk+1−wk with the update rule in the expectation
formula. After replacing some terms based on the corresponding
assumptions, we can find that E

D
(t)
d

[f(β(t+1))] ≤ f(β(t)) −

η|D(t)
d |||∇f(β(t))||2 + Lη2σ2|D(t)

d |
2

2 .

We have already shown that D(t)
d is bounded in Sec. VII-A.

Hence, Theorem 12 implies that when the learning rate η is
small enough, the perturbation from Lη2σ2|D(t)

d |2 does not
affect the convergence.

VIII. EVALUATION

A. Implementation
We implement IS-GC using Ray, a distributed computing

framework for AI applications [33]. On each worker, we
maintain multiple copies of the same model for its different
dataset partitions. In each step, a worker loads a mini-batch
from each dataset partition and uses it to train the model. We
carefully control all random seeds so that data in each batch are
always the same in the same dataset partition. Afterwards, we
can get gradients from the optimizer and encode gradients of
all copies of the model with the corresponding coding scheme.
All workers then send coded gradients to a master. The master
receives coded gradients from w fastest workers (using the
ray.wait() function). After decoding, the master will broadcast
decoded gradients to all workers, which will be used to update
the parameters of all copies of the model.

We also implement GC with FR and CR. With c given, GC
only tolerates c − 1 stragglers, i.e., the master must receive
gradients from w = n − c + 1 fastest workers. When c = 1,
the three placement schemes become the same where the n
dataset partitions are simply placed on n workers. GC, in this
case, becomes synchronous SGD. Similarly, IS-GC becomes
IS-SGD when c = 1. We also use the same random seeds in
different schemes so that the same values of parameters are
initialized in the model to make the comparisons fair.

B. Simulation
We first run a workload of training ResNet-18 on the

ImageNet dataset on a local HPC with 24 workers, with 64
as the batch size. We focus on the performance of tolerating
stragglers in the training. Hence, we simulate stragglers by
adding an arbitrary delay before sending (coded) gradients
to the master from 12 or 24 workers. The delay is generated
randomly following an exponential distribution, based on the
measurements from real cloud workloads [1], [2].

We present the average time per step in Fig. 11. We set
c = 2 in GC and IS-GC, and thus GC can only tolerate one
straggler. When the expected delay is 1.5 seconds, we can see
in Fig. 11(a) that synchronous SGD and GC suffer significantly
from such stragglers. Even worse, GC consumes much more
time than synchronous SGD due to a higher c. On the other
hand, IS-GC consumes significantly less time per step thanks
to its flexibility in the values of w, by up to 74.9%.

It is not surprising to see that the average time per step with
IS-GC is higher than IS-SGD, because of its higher value of c.
However, when we increase the expected delay to 3 seconds
in Fig. 11(b), we can see that the difference can be reduced
to less than 10%, showing that the overhead is marginal when
workers are more straggling. Although a higher c does not help
save the per-step time, it does help make the training faster
with fewer steps before convergence, which will be shown
in the experiments below. Similarly, FR and CR in IS-GC
also have very similar per-step time as their workloads are
very similar on each worker besides the different placement of
dataset partitions. Hence, we omit HR and leave the comparison
to Sec. VIII-C as well.

sync. SGD FR CR
0
1
2
3
4
5
6
7
8

tim
e

(s
ec

.)

sync. SGD & GC

stragglers=12
stragglers=24

w=6 w=12 w=160
1
2
3
4
5
6
7
8

tim
e

(s
ec

.)

IS-SGD

stragglers=12
stragglers=24

w=6 w=12 w=160
1
2
3
4
5
6
7
8

tim
e

(s
ec

.)

IS-GC FR

stragglers=12
stragglers=24

w=6 w=12 w=160
1
2
3
4
5
6
7
8

tim
e

(s
ec

.)

IS-GC CR

stragglers=12
stragglers=24

(a) delay ∼ exp(1/1.5) sec.

sync. SGD FR CR
0
2
4
6
8

10
12

tim
e

(s
ec

.)

sync. SGD & GC

stragglers=12
stragglers=24

w=6 w=12 w=160
2
4
6
8

10
12

tim
e

(s
ec

.)

IS-SGD

stragglers=12
stragglers=24

w=6 w=12 w=160
2
4
6
8

10
12

tim
e

(s
ec

.)

IS-GC FR

stragglers=12
stragglers=24

w=6 w=12 w=160
2
4
6
8

10
12

tim
e

(s
ec

.)

IS-GC CR

stragglers=12
stragglers=24

(b) delay ∼ exp(1/3) sec.

Fig. 11: Average time per step of training ResNet-18 on
ImageNet.

C. Experiments in the Cloud

We train a ResNet-18 using CIFAR-10 on Google Cloud.
Before each experiment, we launch a Ray cluster on n + 1
virtual machines of type n1-standard-4 with NVIDIA Tesla
P100 GPUs, where n is the number of workers. We choose 128
as the batch size, 0.006 as the learning rate, and n = 4. The
optimizer is torch.optim.SGD. We train the model until the
training loss reaches a given threshold. In Fig. 12, we present
performance comparisons in training with different values of
w. The data presented is the average result of 10 trials.

w=1 w=2 w=3 GC /
 sync. SGD

0%

20%

40%

60%

80%

100%

pe
rc

en
ta

ge

(a) percentage of recovered gradients

IS-GC / GC FR (c=2)
IS-GC / GC CR (c=2)
IS-SGD / sync. SGD (c=1)

w=1 w=2 w=3 GC /
 sync. SGD

0

100

200

300

st

ep
s

(b) number of steps

IS-GC / GC FR (c=2)
IS-GC / GC CR (c=2)
IS-SGD / sync. SGD (c=1)

w=1 w=2 w=3 GC /
 sync. SGD

0

1

2

3

tim
e

(s
ec

.)

(c) average time per step

IS-GC / GC FR (c=2)
IS-GC / GC CR (c=2)
IS-SGD / sync. SGD (c=1)

w=1 w=2 w=3 GC /
 sync. SGD

200

250

300

350

400

450

tim
e

(s
ec

.)

(d) training time

IS-GC / GC FR (c=2)
IS-GC / GC CR (c=2)
IS-SGD / sync. SGD (c=1)

Fig. 12: Performance comparisons of training ResNet-18 on
CIFAR-10.

Percentage of gradients recovered. Synchronous SGD and
GC achieve fully recover of the gradients over all samples
in the mini-batches, so we use the number of samples as
the baseline and compare the percentage of samples in the
recovered gradients in IS-GC and IS-SGD. In Fig. 12(a), we
can see that with the increase of w, all schemes can recover
more gradients with more samples, i.e., more gradients are
recovered. However, with a higher value of c, IS-GC can
recover more samples in the gradients. When w = 3, IS-GC
can fully recover gradients, the same as GC. When w = 2, GC
cannot work but IS-GC can still recover gradients from up to
99.6% of samples, which is even higher than expected thanks
to an enduring straggler. We can also observe that FR can
recover gradients better than CR when w = 2. When w = 1,
FR is equivalent to CR as gradients are from one worker only.
When w = 3, both FR and CR can fully recover the gradients.
Number of steps. Based on the results above, we can further
observe in Fig. 12(b) that IS-GC can save the number of steps
needed to train the models. When gradients are fully recovered,
the minimum number of steps is achieved as 146. While the
number of steps increases with the decrease of w, IS-GC can
save the number of training steps by up to 37.1% with each
value of w. Meanwhile, FR also outperforms CR when w = 2,
thanks to its better recovery of gradients.
Average time per step. It is not surprising to see in Fig. 12(c)
that the average time per step in IS-GC is higher than IS-
SGD with different values of w, because of different values of
c. However, IS-GC does not increase the time by c times.
Therefore, we infer that most time is spent on uploading
gradients to the master in this experiment, and hence stragglers
are more likely to be caused by communication. Eventually,
the saving of training steps compensates for the additional time
incurred by IS-GC in each step, as illustrated in Fig. 12(d).
Training time. Finally, we observe in Fig. 12(d) that with the
same values of w, IS-GC takes significantly less time than
IS-SGD. The lowest training time is achieved when w = 2.
With a higher w, the saving of time becomes less significant
because fewer stragglers can be tolerated and IS-GC needs to
spend more time at each step. When w is lower, the higher
number of steps needed outweighs the saved time in each step.
Moreover, we can see that FR finishes training more quickly
than CR when w = 2, as expected from the analysis above.

2 3 4
w

60.0%

70.0%

80.0%

90.0%

100.0%

pe
re

nt
ag

e

(a) percentage of recovered gradients

c1=0
c1=1
c1=2
c1=3

20 40 60 80 100
steps

1.4

1.6

1.8

2.0

tra
in

in
g

lo
ss

(b) training losses after certain numbers of steps

c1=0
c1=1

c1=2
c1=3

Fig. 13: Tradeoffs of gradients and losses achieved by HR.

Tradeoffs in HR. From the results above, we can see that FR
recovers gradients better than CR when w = 2 in Fig. 12(a).
Correspondingly, FR lowers the training time by 22.0% when

w = 2 in Fig. 12(d). We now more carefully study how HR
achieves a tradeoff between them. In Fig. 13, we choose c = 4
and g = 2, and construct HR(8, c1, 4− c1), where 0 ≤ c1 ≤ 3.
When c1 = 0, the HR scheme becomes a CR scheme. The
placement when c1 = 3 is the same as c1 = 4, which is
also the same as FR. We train the ResNet-18 on CIFAR-
10 with n = 8 workers, by choosing the learning rate as
0.001 and the batch size as 128. We can see in Fig. 13 that
in terms of both the number of recovered gradients and the
accuracy, HR generalizes over FR and CR and achieves a
tradeoff between them. Specifically, Fig. 13(a) shows a more
clear trend that more gradients are recovered when c1 increases.
We further look at the corresponding training losses with w = 2
in Fig. 13(b). By comparing the training losses at different
steps, we can further confirm that more gradients recovered
help improve the progress of training.

IX. CONCLUSION

In this paper, we present IS-GC for mitigating stragglers
in distributed training with gradient methods. Compared to
existing schemes including GC and IS-SGD, IS-GC achieves
their advantages at the same time, by tolerating more stragglers
flexibly and recovering more gradients. We apply IS-GC on
two existing placement schemes, FR and CR. We then further
design HR, a more generalized placement scheme that achieves
a flexible tradeoff between FR and CR.

REFERENCES

[1] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
Coding: Avoiding Stragglers in Distributed Learning,” in Proceedings of
International Conference on Machine Learning (ICML), vol. 70, 2017,
pp. 3368–3376.

[2] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding Up Distributed Machine Learning Using Codes,” in IEEE
Transactions on Information Theory, vol. 64, no. 3, 2018, pp. 1514–
1529.

[3] F. Niu, B. Recht, C. Ré, and S. J. Wright, “HOGWILD!: A Lock-free
Approach to Parallelizing Stochastic Gradient Descent,” Proceedings of
the 24th International Conference on Neural Information Processing
Systems (NIPS), 2011.

[4] S. Dutta, G. Joshi, S. Ghosh, P. Dube, and P. Nagpurkar, “Slow
and Stale Gradients can Win the Race: Error-Runtime Trade-offs
in Distributed SGD,” in Proceedings of International Conference on
Artificial Intelligence and Statistics (AISTATS), 2018, pp. 803–812.

[5] R. Bitar, M. Wootters, and S. E. Rouayheb, “Stochastic Gradient Coding
for Straggler Mitigation in Distributed Learning,” IEEE Journal on
Selected Areas in Information Theory, vol. 1, no. 1, pp. 277–291, 2020.

[6] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “PEGASOS:
Primal Estimated Sub-gradient Solver for SVM,” Mathematical Program-
ming, vol. 127, no. 1, pp. 3–30, 2011.

[7] K. Gimpel, D. Das, and N. A. Smith, “Distributed Asynchronous Online
Learning for Natural Language Processing,” in Proceedings of the
Fourteenth Conference on Computational Natural Language Learning.
Association for Computational Linguistics, 2010, pp. 213–222.

[8] S. Shalev-Shwartz and A. Tewari, “Stochastic Methods for L1-regularized
Loss Minimization,” Journal of Machine Learning Research, vol. 12, pp.
1865–1892, 2011.

[9] L. Bottou, “Online Learning and Stochastic Approximations,” On-line
Learning in Neural Networks, vol. 17, no. 9, p. 142, 1998.

[10] A. Harlap, H. Cui, W. Dai, J. Wei, G. R. Ganger, P. B. Gibbons, G. A.
Gibson, and E. P. Xing, “Addressing the Straggler Problem for Iterative
Convergent Parallel ML,” Proceedings of the 7th ACM Symposium on
Cloud Computing (SoCC), pp. 98–111, oct 2016.

[11] D. Wang, G. Joshi, and G. Wornell, “Using Straggler Replication to
Reduce Latency in Large-scale Parallel Computing,” ACM SIGMETRICS
Performance Evaluation Review, vol. 43, no. 3, pp. 7–11, nov 2015.

[12] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial Codes:
an Optimal Design for High-Dimensional Coded Matrix Multiplication,”
Proceedings of the 31st International Conference on Neural Information
Processing Systems (NIPS), 2017.

[13] ——, “Straggler Mitigation in Distributed Matrix Multiplication: Funda-
mental Limits and Optimal Coding,” IEEE Transactions on Information
Theory, vol. 66, no. 3, pp. 1920–1933, 2020.

[14] S. Dutta, V. Cadambe, and P. Grover, “‘Short-Dot’: Computing Large
Linear Transforms Distributedly Using Coded Short Dot Products,” IEEE
Transactions on Information Theory, vol. 65, no. 10, pp. 6171–6193,
2019.

[15] P. Soto, J. Li, and X. Fan, “Dual Entangled Polynomial Code: Three-
Dimensional Coding for Distributed Matrix Multiplication,” in Proceed-
ings of the 36th International Conference on Machine Learning, 2019,
pp. 5937–5945.

[16] N. Raviv, I. Tamo, R. Tandon, and A. G. Dimakis, “Gradient Coding
from Cyclic MDS Codes and Expander Graphs,” IEEE Transactions on
Information Theory, vol. 66, no. 12, pp. 7475–7489, 2020.

[17] W. Halbawi, N. Azizan, F. Salehi, and B. Hassibi, “Improving Distributed
Gradient Descent Using Reed-Solomon Codes,” in Proceedings of IEEE
International Symposium on Information Theory (ISIT). Institute of
Electrical and Electronics Engineers Inc., 2018, pp. 2027–2031.

[18] M. Ye and E. Abbe, “Communication-computation Efficient Gradient
Coding,” in Proceedings of 35th International Conference on Machine
Learning (ICML), 2018, pp. 5610–5619.

[19] E. Ozfatura, S. Ulukus, and D. Gunduz, “Distributed Gradient Descent
with Coded Partial Gradient Computations,” in Proceedings of IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), vol. 2019-May. Institute of Electrical and Electronics
Engineers Inc., 2018, pp. 3492–3496.

[20] ——, “Coded Distributed Computing with Partial Recovery,” 2020.
[Online]. Available: http://arxiv.org/abs/2007.02191

[21] H. Wang, S. Guo, B. Tang, R. Li, Y. Yang, Z. Qu, and Y. Wang,
“Heterogeneity-aware Gradient Coding for Tolerating and Leveraging
Stragglers,” IEEE Transactions on Computers, 2021.

[22] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revis-
iting Distributed Synchronous SGD,” in Proceedings of International
Conference on Learning Representations Workshop Track, 2016.

[23] S. K. Hanna, R. Bitar, S. E. Rouayheb, P. Parag, and Venkat Dasari,
“Adaptive Distributed Stochastic Gradient Descent For Minimizing Delay
In The Presence Of Stragglers,” in Proceedings of the 45th International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2020.

[24] S. Wang, J. Liu, and N. Shroff, “Fundamental Limits of Approximate
Gradient Coding,” Proceedings of the ACM on Measurement and Analysis
of Computing Systems, vol. 3, no. 3, pp. 1–22, 2019.

[25] Z. Charles, D. Papailiopoulos, and J. Ellenberg, “Approximate Gradient
Coding via Sparse Random Graphs,” 2017. [Online]. Available:
http://arxiv.org/abs/1711.06771

[26] H. Wang, Z. Charles, and D. Papailiopoulos, “ErasureHead: Distributed
Gradient Descent without Delays Using Approximate Gradient Coding,”
2019. [Online]. Available: https://arxiv.org/abs/1901.09671

[27] S. Sarmasarkar, V. Lalitha, and N. Karamchandani, “On Gradient
Coding with Partial Recovery,” 2021. [Online]. Available: https:
//arxiv.org/abs/2102.10163

[28] M. R. Garey and D. S. Johnson, “‘Strong’ NP-Completeness Results:
Motivation, Examples, and Implications,” Journal of the ACM (JACM),
vol. 25, no. 3, pp. 499–508, 1978.

[29] N. Sbihi, “Algorithme de Recherche d’un Stable de Cardinalite Maximum
dans un Graphe sans Étoile,” Discrete Mathematics, vol. 29, no. 1, pp.
53–76, 1980.

[30] G. J. Minty, “On Maximal Independent Sets of Vertices in Claw-free
Graphs,” Journal of Combinatorial Theory, Series B, vol. 28, no. 3, pp.
284–304, 1980.

[31] D. Nakamura and A. Tamura, “A Revision Of Minty’s Algorithm for
Finding a Maximum Weight Stable Set Of A Claw-free Graph,” Journal
of the Operations Research Society of Japan, vol. 44, no. 2, pp. 194–204,
2001.

[32] Y. Faenza, G. Oriolo, and G. Stauffer, “An Algorithmic Decomposition
of Claw-free Graphs Leading to an O(n3)-Algorithm for the Weighted
Stable Set Problem,” in Proceedings of the Twenty-Second Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2011, pp. 630–646.

[33] “Anyscale - Ray Distributed Computing - Anyscale.” [Online]. Available:
https://www.anyscale.com/ray-open-source

http://arxiv.org/abs/2007.02191
http://arxiv.org/abs/1711.06771
https://arxiv.org/abs/1901.09671
https://arxiv.org/abs/2102.10163
https://arxiv.org/abs/2102.10163
https://www.anyscale.com/ray-open-source

	Introduction
	Related Work
	Background: Gradient Coding
	Coding Framework and Fractional Repetition
	Cyclic Repetition
	Conflict Graph
	Decoding Algorithm
	Tradeoff between FR and CR

	Hybrid Repetition
	Intuition and a Special Case
	Generalization
	Decoding

	Theoretical Analysis
	Recovered Gradients
	Convergence Analysis

	Evaluation
	Implementation
	Simulation
	Experiments in the Cloud

	Conclusion
	References

