Some Properties of Graphs That Have Hamilton Circuits or Hamilton Paths

Properties (a) – (j) below can be used to show that a graph has no Hamilton circuit / path of a certain kind, or that it has no Hamilton circuit / path at all. Some of these properties can also be used to reduce the search space when we are trying to find a Hamilton circuit or path.

(a) If a graph has a Hamilton circuit C, then each vertex of the graph is incident with exactly 2 edges of the circuit C.

(b) A Hamilton circuit cannot contain all the edges of a shorter simple circuit.

(c) If a graph has a Hamilton path P from a vertex u to a vertex v, then each of u and v is incident with exactly 1 edge of the path P, and each of the other vertices of the graph is incident with exactly 2 edges of the path P.

(d) A Hamilton path cannot contain all the edges of a simple circuit.

(e) A Hamilton path from a vertex u to a vertex v cannot contain all the edges of a shorter path from u to v.

(f) Let G be a graph that has a Hamilton circuit, and let k be any integer such that $0 < k < |V(G)|$. Then, when we remove k vertices from G, the resulting graph will have at most k connected components.

(g) Let G be a graph that has a Hamilton path, and let k be any integer such that $0 < k < |V(G)|$. Then:
 1. If we remove k vertices from G, the resulting graph will have at most $k + 1$ components.
 2. If we remove k vertices from G that include an endpoint of a Hamilton path of G, the resulting graph will have at most k components.
 3. If we remove k vertices from G that include both endpoints of a Hamilton path of G, the resulting graph will have at most $k – 1$ components.

In properties (h) – (j), G denotes a bipartite graph that has a bipartition (R, B), and a vertex of G is said to be red or blue according to whether it belongs to R or to B.

(h) If G has a Hamilton circuit, then G has just as many red vertices as blue vertices, and so $|V(G)|$ is even.

(i) If G has a Hamilton path, then the number of red vertices of G and the number of blue vertices of G are equal or differ by just one.

(j) If G has just as many red vertices as blue vertices, then the first and last vertices of any Hamilton path of G have opposite colors. Otherwise, the first and last vertices of any Hamilton path of G are both red or both blue according to whether G has more red or more blue vertices.