Some Properties of Graphs That Have Hamilton Circuits or Hamilton Paths

Properties (a) – (j) below are equivalent to the properties stated in the following document.

Let G be any undirected graph. As usual, $V(G)$ denotes the vertex set of G.

Suppose G has a Hamilton circuit C. Then:

(a) For all $v \in V(G)$, exactly 2 edges of C are incident with v.
(b) C cannot contain all the edges of a shorter simple circuit of G.

Suppose G has a Hamilton path P that begins at $a \in V(G)$ and ends at $b \in V(G)$. Then:

(c) For $v \in \{a, b\}$, exactly 1 edge of P is incident with v;
 for all $v \in V(G) - \{a, b\}$, exactly 2 edges of P are incident with v.
(d) P cannot contain all the edges of a simple circuit of G.
(e) P cannot contain all the edges of a shorter path from a to b.

Let S be any nonempty proper subset of $V(G)$. Then:

(f) $G - S$ has $\leq |S|$ components if G has a Hamilton circuit.
(g1) $G - S$ has $\leq |S| + 1$ components if G has a Hamilton path.
(g2) $G - S$ has $\leq |S|$ components if G has a Hamilton path that begins or ends in S.
(g3) $G - S$ has $\leq |S| - 1$ components if G has a Hamilton path that begins and ends in S.

Now suppose the graph G is bipartite and has a bipartition (R, B). Then:

(h) $|R| = |B|$ (and so $|V(G)|$ must be even) if G has a Hamilton circuit.
(i) $|R| - |B| = -1$, 0, or +1 if G has a Hamilton path.
(j) If $|R| \neq |B|$, then the first and the last vertices of any Hamilton path of G must both belong to the larger of the two vertex classes R and B. If $|R| = |B|$, then the first and the last vertices of any Hamilton path of G must belong to different vertex classes.