
Greedy Is an Almost Optimal Deque

P. Chalermsook1, M. Goswami1, L. Kozma2, K. Mehlhorn1, and T. Saranurak3∗

1 Max-Planck Institute for Informatics, Saarbrücken, Germany 66123
2 Department of Computer Science, Saarland University, Saarbrücken, Germany 66123

3 KTH Royal Institute of Technology, Stockholm, Sweden 11428

Abstract. In this paper we extend the geometric binary search tree (BST) model
of Demaine, Harmon, Iacono, Kane, and Pǎtraşcu (DHIKP) to accommodate
for insertions and deletions. Within this extended model, we study the online
GREEDY BST algorithm introduced by DHIKP. GREEDY BST is known to be
equivalent to a maximally greedy (but inherently offline) algorithm introduced in-
dependently by Lucas in 1988 and Munro in 2000, conjectured to be dynamically
optimal.
With the application of forbidden-submatrix theory, we prove a quasilinear upper
bound on the performance of GREEDY BST on deque sequences. It has been
conjectured (Tarjan, 1985) that splay trees (Sleator and Tarjan, 1983) can serve
such sequences in linear time. Currently neither splay trees, nor other general-
purpose BST algorithms are known to fulfill this requirement. As a special case,
we show that GREEDY BST can serve output-restricted deque sequences in linear
time. A similar result is known for splay trees (Tarjan,1985; Elmasry, 2004).
As a further application of the insert-delete model, we give a simple proof that,
given a set U of permutations of [n], the access cost of any BST algorithm on
“most” of the permutations from U is Ω(log |U |+ n). In particular, this implies
that the access cost for a random permutation of [n] is Ω(n logn) with high
probability.
Besides the splay tree noted before, GREEDY BST has recently emerged as a
plausible candidate for dynamic optimality. Compared to splay trees, much less
effort has gone into analyzing GREEDY BST. Our work is intended as a step
towards a full understanding of GREEDY BST, and we remark that forbidden-
submatrix arguments seem particularly well suited for carrying out this program.

1 Introduction

Binary search trees (BST) are among the most popular and most thoroughly studied
data structures for the dictionary problem. There remain however, several outstanding
open questions related to the BST model. In particular, what is the best way to adapt
a BST in an online fashion, in reaction to a sequence of operations (e.g. access, insert,
and delete), and what are the theoretical limits of such an adaptation? Does there exist
a “one-size-fits-all” BST algorithm, asymptotically as efficient as any other dynamic
BST algorithm, regardless of the input sequence?

Splay trees have been proposed by Sleator and Tarjan [11] as an efficient BST algo-
rithm, and were shown to be competitive with any static BST (besides a number of other
attractive properties, such as the balance, working set, and static finger properties). The
question whether splay trees are competitive with any dynamic BST algorithm, indeed,

∗Work mostly done while at Saarland University

whether there exists such an algorithm at all is the subject of the famous dynamic opti-
mality conjecture [11].

A different BST algorithm (later called GREEDYFUTURE) has been proposed in-
dependently by Lucas [6] and by Munro [7]. GREEDYFUTURE is an offline algorithm:
it anticipates future accesses, preparing for them according to a greedy strategy. In a
breakthrough result, Demaine, Harmon, Iacono, Kane, and Pǎtraşcu (DHIKP) trans-
formed GREEDYFUTURE into an online algorithm (called here GREEDY BST), and
presented a geometric view of BST that facilitates the analysis of access costs (while
abstracting away many details of the BST model).

At present, our understanding of both splay trees and GREEDY BST is incomplete.
For splay trees, besides the above-mentioned four properties (subsumed by a single
statement called the access lemma), a few other corollaries of dynamic optimality have
been shown, including the sequential access [13] and the dynamic finger [1,2] theorems.
The only known proof of the latter result uses very sophisticated arguments, which
makes one pessimistic about the possibility of proving even stronger statements.

A further property conjectured for splay trees is a linear cost on deque sequences
(stated as the “deque conjecture” by Tarjan [13] in 1985). Informally, a deque sequence
consists of insert and delete operations only at minimum or maximum elements of the
current dictionary. The only known upper bounds for the cost of splay on a sequence of
n deque operations are O(nα(n)) by Sundar [12] and O(nα∗(n)) by Pettie [8]. Here
α is the extremely slowly growing inverse Ackermann function, and α∗ is its iterated
version. A linear bound for output-restricted deque sequences (i.e. where deletes can
only occur at the minimum) has been shown by Tarjan [13], and later improved by
Elmasry [4].

In general, our understanding of GREEDY BST is even more limited. Fox [5] has
shown that GREEDY BST satisfies the access lemma and the sequential access theorem,
but no other nontrivial bounds appear to be known. One might optimistically ascribe
this to a (relative) lack of trying, rather than to insurmountable technical obstacles. This
motivates our attempt at the deque conjecture for GREEDY BST.

As mentioned earlier, a deque sequence consists of insert and delete operations. In
the tree-view, e.g. for splay trees, such operations have a straightforward implementa-
tion. Unfortunately, the geometric view in which GREEDY BST can be most naturally
expressed only concerns with accesses. Thus, prior to our work there was no way to
formulate the deque conjecture in a managable way for GREEDY BST.

Our contributions. We augment the geometric model of DHIKP to allow insert and
delete operations (exemplified by the extension of the GREEDY BST algorithm), and
we show the offline and online equivalence of a sequence of operations in geometric
view with the corresponding sequence in tree-view. This extended model allows us to
formulate the deque conjecture for GREEDY BST. We transcribe the geometric view
of GREEDY BST in matrix form, and we apply the forbidden-submatrix technique to
derive the quasilinear bound O(m2α(m,m+n) + n) on the cost of GREEDY BST, while
serving a deque sequence of length m on keys from [n].

We also prove an O(m + n) upper bound for the special case of output-restricted
deque sequences. We find this proof considerably simpler than the corresponding proofs
for splay trees, and we observe that a slight modification of the argument gives a new
(and perhaps simpler) proof of the sequential access theorem for GREEDY BST.

2

As a further application of the insert-delete model we show through a reduction to
sorting that most representatives from a set U of permutations on [n] have an access
cost of Ω(log |U |+n), for any BST algorithm. In particular, this implies that a random
permutation of [n] has access cost Ω(n log n) with high probability. The latter observa-
tion appears to be folklore, but we are not aware of a published proof. Our argument is
very simple, not relying on lower bounds in the geometric BST model or on balls-to-
bins-type probabilistic arguments. Permutation access sequences are important, since it
is known that the existence of a BST algorithm that is constant-competitive on permu-
tations implies the existence of a dynamically optimal algorithm (on arbitrary access
sequences).

Related work. Most relevant to our work is the deque bound of Pettie for splay trees [8].
That result relies on bounds for Davenport-Schinzel sequences, which can be reformu-
lated in the forbidden-submatrix framework. Indeed, the use of forbidden-submatrix
theory for proving data structure bounds was pioneered by Pettie, who reproved the
sequential access theorem for splay trees [9] (among other data structure results). Our
application of forbidden-submatrix theory is somewhat simpler and perhaps more intu-
itive: the geometric view of GREEDY BST seems particularly suitable for these types
of arguments, as the structure of BST accesses is readily available in a matrix form,
without the need for an extra “transcribing” step.

2 Geometric Formulation of BST with Insertion/Deletion

In this section we extend the model of DHIKP [3] to allow for insertions and deletions.
After defining our geometric model, we prove the equivalence of the arboral (i.e. tree-
view) and the geometric views of BSTs.

2.1 Rotations and Updates

Definition 1 (Valid Reconfiguration). Given a BST T1, a (connected) subtree τ of T1
containing the root, and a tree τ ′ on the same nodes as τ , except that one node may be
missing or newly added, we say that T1 can be reconfigured by an operation τ → τ ′ to
another BST T2 if T2 is identical to T1 except for τ being replaced by τ ′, meaning that
the child pointers of elements not in τ do not change. The cost of the reconfiguration is
max{|τ |, |τ ′|}.

This definition differs from [3, Def.2] in that τ ′ need not be defined on the same nodes
as τ . Note that, according to the definition, if an operation τ → τ ′ changes a child
pointer of an element x, then x ∈ τ . See Figure 1 for examples.

Definition 2 (Execution of Update Sequence). Given an update sequence

S = 〈(s1, op1), (s2, op2), . . . , (sm, opm)〉, where opi ∈ {access, insert, delete},

we say that a BST algorithm executes S by an execution E = 〈T0, τ1 → τ ′1, . . . , τm →
τ ′m〉 if all reconfigurations τt → τ ′t transforming Tt−1 to Tt are valid, and for all t

– if opt = access, then st ∈ τt and τ ′t = τt as a set,

3

– if opt = insert, then τ ′t = {st}∪̇τt as a set,
– if opt = delete, then τt = {st}∪̇τ ′t as a set.

We also say that E executes S. The cost of execution of E is the sum over all
reconfiguration costs. If an element x ∈ τt ∪ τ ′t , we say that x is touched at time t.

Fig. 1: (left) Examples of valid insert/delete operations. Circled elements indicate τ and τ ′;
(right) Examples of invalid operations: τ does not contain root (above) and τ ′ cannot
link all pendant trees (below).

We assume that we work over the set [n]. Each element can be inserted or deleted
many times, but insertions and deletions on the same element must be alternating. We
also assume that every element is accessed or updated at least once.

2.2 Valid Sets

Definition 3 (Geometric View of Update Sequence). The geometric view of an update
sequence S is a point set P (S) = A(S)∪̇I(S)∪̇D(S) in the integer grid [n] × [m]
consisting of access points A(S) = {(st, t) | opt = access}, insertion points I(S) =
{(st, t) | opt = insert}, and deletion points D(S) = {(st, t) | opt = delete}.
Update points are U(S) = I(S)∪̇D(S).

We usually omit the parameter S and simply write A, I,D,U when the choice of S is
clear from context. We denote the x-coordinate and t-coordinate of a point p by (px, pt).
By element x, we mean the column x. By time t, we mean the row t.

Definition 4 (Valid Point). Given a point set P (S) in the integer grid [n] × [m], let
p be a point (p may not be in P (S)), and let p′, p′′ ∈ U(S) denote the update points
nearest to p, below (resp. above) p, i.e. p′x = p′′x = px, and p′t < pt < p′′t . One or both
of p′ and p′′ might not exist. We say that p is valid in P (S), iff:

– p /∈ U(S), p′ ∈ I(S) (or does not exist), and p′′ ∈ D(S) (or does not exist), or
– p ∈ I(S), p′ ∈ D(S) (or does not exist), and p′′ ∈ D(S) (or does not exist), or
– p ∈ D(S), p′ ∈ I(S) (or does not exist), and p′′ ∈ I(S) (or does not exist).

Let Tt denote the resulting tree at time t during an execution of the BST algorithm
E on the update sequence S.

4

Fact 5 A point x can be touched at time t iff (x, t) is valid.

Suppose that (x, t) is valid. If (x, t) is a deletion point, then x is in Tt−1 but not Tt,
and it is touched. If (x, t) is an insertion point, then x is in Tt but not Tt−1, and it is
touched. If (x, t) is not an update point, then x is in both trees, and might or might not
be touched. See Figure 2 for an illustration.

Definition 6 (Predecessor/Successor of a Point). GivenP (S), the predecessor pred(p)
of a point p is the largest element x′ smaller than px such that (x′, pt) is valid. The suc-
cessor succ(p) of p is symmetrically defined. We also write pred(p) = (x′, pt) as a
point, as well as succ(p).

Definition 7 (Valid Set). A point set P ⊇ P (S) is valid iff every point p ∈ P is valid.

Fig. 2: A point set with insert (◦) and delete (×) points. Dashed lines
indicate valid points. Observe that succ(x) = v3, succ(y) =
v2, and pred(x) = pred(y) = v1.

For any node x in a tree T , let predT (x) de-
note predecessor of x in T and define the suc-
cesssor succT (x) similarly. The following lemma
shows that points in a valid set, and their prede-
cessor and successor, are associated with nodes in
the tree at the corresponding time.

Lemma 8. Let P ⊇ P (S) be a valid point
set, and E executes S. For any p ∈ U(S), we
have pred(p) = predTpt (px) and succ(p) =

succTpt (px).

Proof: Let x′ = pred(p) and hence (x′, pt) is
valid by definition. By Fact 5, x′ can be touched
at time pt. Since x′ is not an updated element, we
have x′ ∈ Tpt . Moreover, x′ is the closest element
on the left of px at this time. So x′ = predTpt (px).
The proof for successor is symmetric. ut

Definition 9 (Active Time of Points). Let p be a point in a valid point set P ⊇ P (S).
The active time act(p) of p is the maximal consecutive interval of time [tins(p), tdel(p)]
containing pt such that, for all t ∈ act(p), (px, t) is valid. We call tins(p) insertion
time of p, and tdel(p) deletion time of p.

2.3 Arborally Satisfied Set

Definition 10 (Geometric View of BST Execution). The geometric view of a BST
execution E = 〈T0, τ1 → τ ′1, . . . , τm → τ ′m〉 of some update sequence S is the point
set P (E) = {(x, t) | x ∈ τt ∪ τ ′t} in the integer grid, indicating which element is
touched at which time. Note that P (E) ⊇ P (S).

Definition 11 (Arborally Satisfied Set). A valid point set P ⊇ P (S) is (arborally)
satisfied iff the following holds:

5

– For each pair p, q ∈ P that are both active from time pt to qt (called an active
pair), either both p and q lie in the same vertical/horizontal line, or there is a point
r ∈ �pq ∩ P \ {p, q}. If r is on the bottommost row of �pq , then r cannot be a
deletion point. If r is on the topmost row of �pq , then r cannot be an insertion
point.

– For each update point p ∈ U , if both pred(p) and succ(p) exist, then either pred(p)
or succ(p) is also in P .

The first condition is almost the same as the one in [3, Def. 2.3] but focused only on
active pairs (they are active from pt to qt), and with additional technical condition due
to update points. The second condition says that if the updated element is not the current
minimum/maximum, then one of its adjacent elements must be touched.

Note that if there are no update points, then all points are active the whole time and
our definition is equivalent to [3, Def. 2.3]. We defer the proof of the following fact to
the appendix.

Fact 12 Suppose that P is satisfied. Then, for each pair p, q ∈ P which are both active
from time pt to qt and pt < qt, there exists a point in P \{p, q} on a side of �pq incident
to p, that is either a non-deletion point, or the corner (px, qt). Similarly, there exists a
point in P \ {p, q} on a side of �pq incident to q, that is either a non-insertion point, or
the corner (qx, pt).

3 Equivalence of Arboral and Geometric Views

In this section we prove the following theorem:

Theorem 13. A point set P is satisfied iff P = P (E) for some BST execution E.

The first direction of the proof involves considering a BST algorithm and showing
that it generates a valid point set (tree to geometry). The second direction is showing
how to convert a valid point set to a BST algorithm (geometry to tree).

3.1 Tree to Geometry

Lemma 14. Let x and z be elements with consecutive values in a BST T , with x < z.
Then one of x and z is an ancestor of the other.

Proof: Suppose not. Then the lowest common ancestor of x and z is another element y.
We know x < y < z which is a contradiction. ut

Lemma 15. Suppose that y is not the minimum or maximum element in a BST T . To
insert or delete y in T , either predT (y) or succT (y) must be touched.

Lemma 16. For any execution E, a point set P (E) is satisfied.

Proof: There are two conditions that need to be checked.
For the first condition, let p, q be a pair of points in P (E) active from time pt to qt.

Suppose that p, q violate the condition. Hence, they are not vertically or horizontally
aligned. We assume that pt < qt and px < qx. Since px and qx are active at time pt,

6

by Fact 5 and the statement below the fact, they exist in the tree Tpt . Hence, a lowest
common ancestor a of px and qx in Tpt is well-defined. There are two cases.

If a = px, then px is an ancestor of qx. Since �pq is not satisfied, qx is not touched
from time pt to qt − 1 and px remains an ancestor of qx right before time qt. Thus, to
touch qx at time qt, px must be touched, and so (px, qt) ∈ �pq . Only insertion point
can be in the topmost row of unsatisfied �pq . So (px, qt) an insertion point. But this
implies that p and q are not active pair, which is a contradiction.

If a 6= px, then a must be touched at time pt. As a has value between px and qx, we
have (a, pt) ∈ �pq . Since �pq is not satisfied, (a, pt) is a deletion point and, moreover,
px must be its predecessor. Hence px becomes an ancestor of qx right after time pt and
we can use the previous argument again.

For the second condition, suppose that p ∈ U is an update point. That is, we update
px in the BST Tpt . If both pred(p) and succ(p) exist, then px is not a minimum or
maximum in Tpt . By Lemma 15, either predTpt (px) or succTpt (px) is touched at time
pt. By Lemma 8, predTpt (px) = pred(p) and succTpt (px) = succ(p), and we are
done. ut

3.2 Geometry to Tree

Now we show how to convert a valid point set to an offline algorithm first. We need the
following lemma, which is essentially a converse of Lemma 15, saying that if we touch
either predT (y) or succT (y), then we can insert or delete y. We defer the proofs of the
following two statements to the appendix.

Lemma 17. Suppose either predT (y) or succT (y) is in a subtree τ containing the root
of T , or y is the minimum or maximum element in T . Then (i) any reconfiguration
τ → τ ′, where τ ′ = τ ∪̇{y} as a set, is valid, and (ii) any reconfiguration τ → τ ′,
where τ = τ ′∪̇{y} as a set, is valid.

Lemma 18 (Offline Equivalence). For any satisfied setX , there is a point set P (E) =
X for some execution E. We call E a tree view of X .

By Lemma 16 and 18, this concludes the proof of Theorem 13.
Observe that if X = P (E), the quantity |X| is exactly the execution cost of E.

3.3 Geometry to Tree: Online

The discussion in § 3.2 assumes that a satisfied set X is available all at once, and we
show that there exists an execution E (i.e. an offline BST algorithm) whose point set
P (E) is exactly X .

We call an online geometric algorithm an algorithm that, given a geometric update
sequence P (S) ⊆ [n]× [m], outputs a satisfied superset P ⊇ P (S), with the condition
that both the input and output are revealed row-by-row (i.e. the decision on which points
to touch can depend only on the current and preceding rows of the input). We remark
that GREEDY BST (as extended in § 4) is such an algorithm.

Analogously, by an online BST algorithm we mean a procedure that, given an ini-
tial set S0 ⊆ [n], and an update sequence S, outputs an execution E, with the condition

7

that the both the input and output are revealed item-by-item (i.e. the decision on which
reconfiguration to perform can depend only on the current and preceding update opera-
tions).

Theorem 19 (Online Equivalence). For any online geometric algorithm A, there ex-
ists an online BST algorithm A′ such that, on any update sequence, the cost of A′ is
bounded by a constant times the cost of A.

The proof of Theorem 19 is an adaptation of the proof of Lemma 2.3 in [3] to the
new geometric setting, and is analogous to the proof of Lemma 18. We omit the proof
in this extended abstract.

4 Defining GREEDY BST with Insertion/Deletion

GREEDY BST is an online algorithm for constructing a satisfied set given an update
sequence S. At each time t, GREEDY BST minimally satisfies the point set up to time
t. Having defined satisfied sets when there are update points, we naturally obtain the
extension of GREEDY BST that can handle insertions and deletions.

Fig. 3: Sample GREEDY BST execution with insertion (◦),
deletion (×), accessed (double circle), and touched (•)
points. Thick line and red color indicate stair of p, and
red (�) are the newly touched points at time pt. Observe
that a non-minimum insert or delete must touch a neigh-
bor as well.

We develop some notation for describing the al-
gorithm. A rectangle �pq is unsatisfied if there is no
other point in the proper (closed) rectangle formed by
points p and q. We say that p and q are an active pair if
they are active from time pt to qt. The stair of point p
is denoted by stair(p) = {p}∪{q | �pq is unsatisfied
rectangle formed by an active pair p and q where q is
below p}. The stair of element x at time t is the stair of
the point (x, t). Satisfying/touching stair(x, t) means
visiting, at time t, the elements of points in the stair:
{(qx, t) | q ∈ stair(x, t)}. These elements visited are
then added to the row at time t.

Fact 20 Touching the stair stair(p) is to minimally
satisfy the point p.

Therefore, when GREEDY BST gets an access point
p, it touches only stair(p). For an update point
p, if p is not a minimum or maximum, then
GREEDY BST chooses the smaller set between

stair(p) ∪ stair(pred(p)) and stair(p) ∪ stair(succ(p)). This is because of the sec-
ond condition of satisfied set. If p is a minimum or maximum, then GREEDY BST just
touches stair(p). The execution of GREEDY BST is illustrated in Figure 3.

The following observation is useful for deque sequences. For insertion point p, ob-
serve that stair(p) = {p} because the active time of p begins at time pt itself (for any
point q below p, p and q are not an active pair by definition).

Fact 21 To insert p such that p is the minimum or maximum, GREEDY BST touches
only p.

8

5 Performance of GREEDY BST on Deque Sequences

Definition 22 (Deque Sequence). An update sequence is a deque sequence if it has
only insertions and deletions at the current minimum or maximum element, and no
access operations.

Definition 23 (Output-restricted). A deque sequence is output-restricted if it has dele-
tions only at minimum elements.

Theorem 24. The cost of executing a deque sequence on [n] of lengthm by GREEDY BST
is at most O(m2α(m,n+m) + n), where α is the inverse Ackermann function.

Theorem 25. The cost of executing an output-restricted deque sequence on [n] of length
m by GREEDY BST is at most 24m+ 12n.

Fig. 4: Sample execution of GREEDY BST on
a concentrated deque sequence with in-
sertion (◦), deletion (×), and touched
(•) points. Dashed lines show the active
times of elements.

Remark. The bound in Theorem 25 refers to the cost of the
online geometric GREEDY BST. In the online tree-view
equivalent the constants can be larger, hinging on the de-
tails of Theorem 19, but the bound remains of the form
O(m+ n).

The rest of this section is devoted to the proofs of The-
orems 24 and 25.

5.1 Concentrated Deque Sequences

We first reduce the analysis of GREEDY BST on any deque
sequence to that on a special type of deque sequence that
we call a concentrated deque sequence. Since in a deque
sequence we can only delete the current minimum or max-
imum, we can define two sets of elements as follows: let
Lt be the set of elements which are deleted (from the left)
before time t when they were the minimum at their dele-
tion time, and Rt be the set of elements which are deleted
(from the right) before time t when they were the maxi-
mum at their deletion time.

Definition 26 (Concentrated Deque Sequence). A deque sequence is concentrated if,
for any time t, if the inserted element x is the minimum, then y < x for all y ∈ Lt, and
if x is the maximum, then x < y for all y ∈ Rt.

Note that the definition implies that each element in a concentrated deque sequence
can be inserted and deleted at most once. We defer the proof of the following lemma to
the appendix.

Lemma 27. For any deque sequence S, there is a concentrated deque sequence S′ such
that the execution of any BST algorithm on S′ and S have the same cost.

9

5.2 GREEDY BST on a Concentrated Deque Sequence

Now we analyze the performance of GREEDY BST on concentrated deque sequences
(see Figure 4 for an example). Because of Lemma 27, we can view the points touched
by GREEDY BST as an (m × (n +m)) binary matrix (i.e. with entries 0 and 1), with
all touched points represented as ones, and all other grid elements as zeroes. Notice that
the number of columns is n + m instead of n because of the reduction in Lemma 27
which allows each element to be inserted and deleted at most once.

Definition 28 (Forbidden Pattern). A binary matrix M is said to avoid a binary ma-
trix P (called a pattern) if there exists no submatrix M ′ of M with same dimensions as
P , such that for all 1-entries of P , the corresponding entry in M ′ is 1 (the 0-entries of
P are “don’t care” values).

We denote by Ex(P,m, n) the largest number of 1s in an (m × n) matrix M that
avoids pattern P . In this work, we refer to the following patterns (as customary, we
write dots for 1-entries and empty spaces for 0-entries).

P5 =

(
• • •
• •

)
and P4 =

• •
•
•

Lemma 29. The execution of GREEDY BST on concentrated deque sequences avoids
the pattern P5.

Proof: Suppose that P5 appears in the GREEDY BST execution, and name the touched
points matched to the 1-entries in P5 from left to right as a, b, c, d, and e.

Let t > bt be smallest such that (cx, t) is touched. Then t ≤ ct and either b or d
must have been deleted within the time interval [bt, t]. Otherwise, any update point in
the interval [bt, t] is outside the interval [bx, dx] and cx is “hidden” by b and d (it cannot
be on the stair of any update point).

Assume w.l.o.g. that b is deleted. If b is deleted by a minimum-delete, then a cannot
be touched. If b is deleted by a maximum-delete, then e cannot be touched. This is
because the sequence is concentrated. ut

Lemma 30. The execution of GREEDY BST on concentrated output-restricted deque
sequences avoids the pattern P4.

Proof: Suppose that P4 appears in the GREEDY BST execution, and name the touched
points matched to the 1-entries in P4 from left to right as a, b, c, and d. We claim that
in order to touch c, there has to be a deletion point in the interval [bx, dx] in the time
interval [dt, ct]. Otherwise, any deletion point in the time interval [dt, ct] is left of bx
(as deletes happen only at the minimum). Furthermore, all insertion points in the time
interval [bt, ct] must be be outside of [bx, dx] (since both b and d are active at time bt).
We remind that insertion touches nothing else besides the insertion point itself. This
means that c can not be touched: it is “hidden” to deletion points on the left of bx by b.

Denote the deletion point in the area [bx, dx] × [dt, ct] as d′. Observe that a is to
the left and above d′, and since we only delete minimums, a is not active at time d′t. In

10

order to be touched, a must become active after d′t via an insertion, contradicting that
the sequence is concentrated. ut

Fact 31 ([10, Thm 3.4]). Ex(P5, u, v) = O(u2α(u,v) + v).

Fact 32 ([10, Thm 1.5(5)]). Ex(P4, u, v) < 12(u+ v).

Proof of Theorem 24: By Lemma 27, it is enough to analyze the cost of GREEDY BST
on concentrated deque sequences. This cost is bounded by O(m2α(m,m+n) + n) using
Lemma 29 and Fact 31.

Proof of Theorem 25: By Lemma 27, it is enough to analyze the cost of GREEDY BST
on concentrated deque sequences. This cost is bounded by 24m+12n using Lemma 30
and Fact 32.

Remark. The proof of Theorem 25 can be minimally adjusted to prove the sequential
access theorem for GREEDY BST. A sequential access sequence can be simulated as
a sequence of minimum-deletions. In this way we undercount the cost by exactly one
touched point above each access, which adds a linear term to the bound.

6 A Lower Bound on Accessing a Set of Permutations

Let U be a set of permutations on [n]. In this section we prove the following theorem:

Theorem 33. Fix a BST algorithm A and a constant ε < 1. There exists U
′ ⊆ U of

size |U ′ | ≥ (1 − 1
|U |ε)|U | such that A requires Ω(log |U | + n) access cost on any

permutation in U
′
.

Proof: The proof utilizes the geometric view of insertions, and uses two reductions. We
first claim that there exists an algorithm B that is capable of insertions such that the
cost of A to access a permutation π is no less than the cost of B to insert π. Note that
since A is accessing π, all the points are active by definition. We will describe B in the
geometric view simply by requiring that upon inserting π(t) at time t, B touches all the
points thatA touches while accessing π(t) at time t. Note thatA touches at least all the
points in stair(π(t), t), and B is required only to touch either pred(π(t)) and its stair,
or succ(π(t)) and its stair (Definition 11). Since pred(π(t)) belongs to stair(π(t), t),
one easily sees that stair(pred(p)) ⊂ stair(π(t), t), and this defines a valid insertion
algorithm.

We now reduce B to an algorithm for sorting π. Just by a traversal of the tree main-
tained by B at time n, we can produce the sorted order of π after incurring a cost of
O(n). However, we know that to sort a set U of permutations, any (comparison-based)
sorting algorithm must requireΩ(log |U |+n) comparisons on at least a 1− 1

|U |ε fraction
of the permutations in U . To see this, note that the decision tree of any sorting algorithm
must have at least |U | leaves (note that here we are assuming the weaker hypothesis that
A and hence the sorting algorithm, are only designed to work on U ; they may fail out-
side U). The number of leaves at height at most (1 − ε) log |U | is at most |U |1−ε, and
hence at least a 1 − 1

|U |ε fraction require at least (1 − ε) log |U | = Ω(log |U |) com-
parisons. Adding the trivial bound of Ω(n) to scan the input permutation gives us the
desired bound.

11

Remark. Upper bounds proved for our model do not directly translate into bounds for
algorithms. For example, when a new maximum is inserted, this can be done at a cost of
one by making the element the root of the tree, respectively, only touching the element
inserted. Note that this requires the promise that the element inserted is actually a new
maximum. A slight extension makes the model algorithmic. This is best described in
tree-view. We put all nodes of the tree in in-order into a doubly-linked list. Then, in
the case of an insertion one can actually stop the search once the predecessor or the
successor of the new element has been reached in the search because by also comparing
the new element with the neighboring list element, one can verify that a node contains
the predecessor or successor. Thus at the cost of a constant factor, bounds proved for
our model are algorithmic. ut

References

1. R. Cole. On the dynamic finger conjecture for splay trees. part ii: The proof. SIAM Journal
on Computing, 30(1):44–85, 2000. 2

2. Richard Cole, Bud Mishra, Jeanette Schmidt, and Alan Siegel. On the dynamic finger conjec-
ture for splay trees. part i: Splay sorting log n-block sequences. SIAM J. Comput., 30(1):1–
43, April 2000. 2

3. Erik D. Demaine, Dion Harmon, John Iacono, Daniel M. Kane, and Mihai Patrascu. The
geometry of binary search trees. In SODA 2009, pages 496–505, 2009. 3, 6, 8, 14

4. Amr Elmasry. On the sequential access theorem and deque conjecture for splay trees. Theor.
Comput. Sci., 314(3):459–466, 2004. 2

5. Kyle Fox. Upper bounds for maximally greedy binary search trees. In WADS 2011, pages
411–422, 2011. 2

6. Joan M. Lucas. Canonical forms for competitive binary search tree algorithms. Tech. Rep.
DCS-TR-250, Rutgers University, 1988. 2

7. J.Ian Munro. On the competitiveness of linear search. In MikeS. Paterson, editor, Algorithms
- ESA 2000, volume 1879 of Lecture Notes in Computer Science, pages 338–345. Springer
Berlin Heidelberg, 2000. 2

8. Seth Pettie. Splay trees, davenport-schinzel sequences, and the deque conjecture. In Pro-
ceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2008, San Francisco, California, USA, January 20-22, 2008, pages 1115–1124, 2008. 2, 3

9. Seth Pettie. Applications of forbidden 0-1 matrices to search tree and path compression-
based data structures. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 1457–
1467, 2010. 3

10. Seth Pettie. Generalized davenport–schinzel sequences and their 0–1 matrix counterparts.
Journal of Combinatorial Theory, Series A, 118(6):1863–1895, 2011. 11

11. Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. J. ACM,
32(3):652–686, 1985. 1, 2

12. Rajamani Sundar. On the deque conjecture for the splay algorithm. Combinatorica,
12(1):95–124, 1992. 2

13. Robert Endre Tarjan. Sequential access in play trees takes linear time. Combinatorica,
5(4):367–378, 1985. 2

12

A Proof Omitted from Section 2

A.1 Proof of Fact 12

We give the proof only for p, as it is symmetric for q.
Since P is satisfied, there is a point r in �pq∩P \{p, q} that satisfies �pq . If r is on

the horizontal side incident to p, then it is not a deletion point, otherwise it would not
satisfy �pq by the first condition of Definition 11. If r is on the vertical side incident
to p, and not (px, qt), then it is not a deletion point, otherwise p and q would not be an
active pair. Thus, if r is on a side of �pq incident to p, we are done. Suppose this is not
the case, and let r be a point in �pq ∩ P \ {p, q} satisfying �pq such that tins(r) is
minimum. We claim that tins(r) ≤ pt.

First, we have tins(r) < qt because otherwise tins(r) = qt and hence r is an inser-
tion point on the topmost row of �pq , and cannot satisfy �pq due to the first condition of
Definition 11. Then there must be some other point in �pq∩P \{p, q}, whose insertion
time is before qt, a contradiction.

Next, suppose tins(r) > pt then the point r′ = (rx, tins(r)) is an insertion point,
and, by the second condition of Definition 11, there is another point r′′ ∈ �pq which
is either pred(r′) or succ(r′). Note that r′′ 6= p, q because pt < tins(r) < qt. Observe
that tins(r′′) < tins(r), contradicting the choice of r.

Now, since tins(r) ≤ pt, p and r are both active from time pt to rt, and we can
repeat the same argument as long as r is not on the sides of �pq incident to p.

B Proof Omitted from Section 3

B.1 Proof of Lemma 15

Since y is not the minimum or maximum, both predecessor predT (y) and successor
succT (y) of y exist. Let x = predT (y) and z = succT (y). We consider two cases:
insertion and deletion.

For insertion of y, y /∈ T before we insert. Then x and z are consecutive, and, by
Lemma 14, we assume by symmetry that x is an ancestor of z. In particular, x has right
child. After insertion, x and y are consecutive. So, by Lemma 14, either x or y is an
ancestor of another one. If x is an ancestor of y, then x must have been touched so that
we can change pointers below x. Otherwise, y is an ancestor of x and x cannot have a
right child. Thus, x’s right child pointer must have been changed to null, meaning that
x has been touched.

For deletion of y, suppose that we do not touch both x and z. If y has at most one
child, then one of x and z is an ancestor of y, but we must touch all the ancestors of y,
a contradiction. If y has two children, then x has no right child and z has no left child.
Suppose we delete y without touching x and z. Therefore, x still has no right child and
z still has no left child even after y /∈ T . This contradicts Lemma 14.

B.2 Proof of Lemma 17

Suppose that x = predT (y) ∈ τ . The proof when succT (y) ∈ τ is symmetric. There
are two statements to be proved regarding insertion and deletion of y, respectively. Let
childR(x) denote a right child pointer of element x.

13

For insertion, we show that τ → τ ′ where τ ′ = τ ∪̇{y} is valid. First, we insert y
into τ as a right child of x. The only pointer changes are: childR(y)← childR(x) and
childR(x)← y. Finally, we rotate the resulting subtree, which includes y, to get τ ′.

For deletion, we show that τ → τ ′ where τ = τ ′∪̇{y} is valid. Again, we rotate
τ such that y is a right child of x, and then remove y. The only pointer change is:
childR(x)← childR(y). Then we rotate the resulting subtree, which excludes y, to get
τ ′.

B.3 Proof of Lemma 18

We use the almost same argument as in [3, Lemma 2.2] but we need to make sure that
we can also update elements while touching all points in X exactly. The argument is as
follows.

Define the next touch time N(x, t0) of x at time t0 in X to be the minimum t-
coordinate of any point in X on the ray from (x, t0) to (x,∞). If there is no such point,
then N(x, t0) =∞.

Let Tt be the treap defined on all points (x,N(x, t)) active right after time t. Recall
that a treap is a BST on the first coordinate and a heap on the second. Let Xt denote
the set of elements in the row t of X . Since Tt is a treap with heap priority N(·, t),
τt = Xt ∩ Tt is connected subtree containing the root of Tt. So we have τt = Xt, and
τt = Xt \ {y} if we insert y at time t, as desired.

If there is an update element y in Xt, and predT (y) and succT (y) exist, by Lemma
17, we just need to show that either predTt(y) ∈ Xt or succTt(y) ∈ Xt. Since X is
satisfied, either pred(y, t) ∈ Xt or succ(y, t) ∈ Xt, say pred(y, t) ∈ Xt. By Fact 8,
predTt(y) = pred(y, t). Therefore, τt → τ ′t is a valid reconfiguration where τt ∪ τ ′t =
Xt.

After, we update y in τt and get τ ′t , we want to get Tt+1 which is a treap defined
on N(·, t + 1). To get this, we just heapify τ ′t based on N(·, t + 1). We claim that the
whole tree is now Tt+1. The following argument is exactly same as in [3, Lemma 2.2].
Suppose there is a parent/child (q, r) that heap property does not hold. Both q, r cannot
be in τ ′t by construction. The next touch time of elements outside τ ′t does not change,
so both q, r cannot be outside τ ′t .

Now, we have q ∈ τ ′t and r /∈ τ ′t where N(r, t + 1) < N(q, t + 1). The rectangle
defined from (q, t) and (r,N(r, t + 1)) will contradict Fact 12. There are two sides to
be considered. First, there is no point on the vertical side ((q, t), (q,N(r, t + 1)] be-
cause N(r, t + 1) < N(q, t + 1). Next, all elements in Tt+1 between q and r must
be descendants of r, and they cannot be touched as r is not touched at time t. So the
horizontal side ((q, t), (r, t)] can only have one deletion point s which has qx as a pre-
decessor/successor. This violates Fact 12 and completes the proof.

C Proof Omitted from Section 5

C.1 Proof of Lemma 27

Suppose that S is not concentrated, and let t0 be the first time which S violates its
condition. We will modify the sequence and obtain another sequence S′ such that the

14

first violation time is later than t0, and the executions of S and S′ on any BST algorithm
are the same, and repeat the argument.

So, assume w.l.o.g. that the element x is inserted as the minimum at time t0. Since
the condition is violated, x < y for some y ∈ Lt. Let x′ be an element such that y < x′,
for all y ∈ Lt0 , and x′ is less than all elements in the current tree Tt0 . Note that x′ must
exist, because there is no violation before time t0.

Now, since BST is a comparison-based model, as long as the relative values of all
following update elements are preserved, even when the sequence is modified, the BST
algorithm would behave the same.

Therefore, we will modify S such that we set the value of x to be x′ while preserving
the relative values of all following update elements. So now the condition is not violated
at time t0 while the execution of the modified sequence is unchanged.

15

	-1ex Greedy Is an Almost Optimal Deque
	 P. Chalermsook, M. Goswami, L. Kozma, K. Mehlhorn, and T. Saranurak

