
Approximate Range Emptiness in Constant Time and Optimal
Space

Mayank Goswami∗ Allan Grønlund† Kasper Green Larsen‡ Rasmus Pagh§

Abstract

This paper studies the ε-approximate range emptiness problem, where the task is to represent a set
S of n points from {0, . . . , U − 1} and answer emptiness queries of the form “[a; b] ∩ S 6= ∅ ?” with
a probability of false positives allowed. This generalizes the functionality of Bloom filters from single
point queries to any interval length L. Setting the false positive rate to ε/L and performing L queries,
Bloom filters yield a solution to this problem with space O(n lg(L/ε)) bits, false positive probability
bounded by ε for intervals of length up to L, using query time O(L lg(L/ε)). Our first contribution is to
show that the space/error trade-off cannot be improved asymptotically: Any data structure for answering
approximate range emptiness queries on intervals of length up to Lwith false positive probability ε, must
use space Ω(n lg(L/ε))−O(n) bits. On the positive side we show that the query time can be improved
greatly, to constant time, while matching our space lower bound up to a lower order additive term. This
result is achieved through a succinct data structure for (non-approximate 1d) range emptiness/reporting
queries, which may be of independent interest.

∗Max-Planck Institute for Informatics. Email: gmayank@mpi-inf.mpg.de.
†Aarhus University. Email: jallan@cs.au.dk. Supported by MADALGO - Center for Massive Data Algorithmics, a

Center of the Danish National Research Foundation.
‡Aarhus University. Email: larsen@cs.au.dk. Supported by MADALGO - Center for Massive Data Algorithmics, a

Center of the Danish National Research Foundation.
§IT University of Copenhagen. Email: pagh@itu.dk. Supported by the Danish National Research Foundation under the

Sapere Aude program.

1 Introduction

The approximate membership problem is a fundamental and well-studied data structure problem. Here we
are to represent a static set S of n distinct points/elements from a universe [U] = {0, . . . , U − 1}. A query
is specified by a point x ∈ [U] and the data structure must answer member with probability 1 if x ∈ S.
If x /∈ S, then the data structure must answer not member with probability at least 1 − ε, where ε > 0
is a parameter of the data structure and the probability is over the randomness used when constructing the
data structure. Hence the name approximate membership. Note that solutions are inherently randomized
as queries for points not in S must be answered correctly with a given probability. The value ε is typically
refered to as the false positive rate.

While storing S directly requires lg
(
U
n

)
≥ n lg(U/n) bits, approximate membership data structures

can be implemented to use only n lg(1/ε) + O(n) bits, which is known to be optimal [8]. Thus efficient
approximate membership data structures use less space than the information theoretic minimum for storing
S directly.

In this paper, we study a natural generalization of the approximate membership problem, in which we
are to handle query intervals rather than single-point queries. More formally, we define the approximate
range emptiness problem as follows: Represent a set S of n points from a universe [U], such that given a
query interval I = [a; b], the data structure must answer non-empty with probability 1 if there is a point from
S in I (i.e. “is S ∩ I 6= ∅?”). If I contains no points from S, the data structure must answer empty with
probability at least 1− ε.

The approximate range emptiness problem was first considered in database applications [1]. Here ap-
proximate range emptiness data structures were used to store a small (approximate) representation of a
collection of points/records in main memory, while maintaining the actual (exact) points on disk. When
processing range queries, the approximate representation is first queried to avoid expensive disk accesses
in the case of an empty output. The paper takes a heuristic approach to the problem and design data struc-
tures that seem to perform well in practice. Unfortunately no formal analysis or worst case performance
guarantees are provided. Motivated by this lack of theoretical understanding, we ask the following question:

Question 1. What theoretical guarantees can be provided for the approximate range emptiness problem?

Towards answering this question, observe that an approximate range emptiness structure solves the
approximate membership problem and hence a space lower bound of n lg(1/ε) bits follows directly from
previous work. But can this space bound be realized? Or does an approximate range emptiness data structure
require even more space? What if we require only that the data structure answers queries of length no more
than a given input parameter L? At least for L � u/n, we can beat the trivial n lg(U/n) space bound
as follows: Implement the approximate membership data structure of [10] on S with false positive rate
ε/L. Upon receiving a query interval I of length no more than L, query the approximate membership data
structure for every x ∈ I ∩ [U] and return non-empty if any of these queries return member. Otherwise
return empty. By a union bound, this gives the desired false positive rate of ε and the space consumption
is n lg(L/ε) bits. How much can we improve over this trivial solution? A natural line of attack would be
to design an approximate membership structure where the locations of the false positives are correlated and
tend to “cluster” together inside a few short intervals. Is this possible without increasing the space usage?
Answering these questions is the focus of this paper.

Our Results. In Section 2, we answer the questions above in the strongest possible negative sense, i.e. we
prove that any data structure for the approximate range emptiness problem, where only query intervals of

1

length up to a given L are to answered, must use

n lg

(
L1−O(ε)

ε

)
−O(n)

bits of space. Thus it is not even possible to shave off a constant factor in the space consumption of the
trivial solution, at least for ε = o(1). Moreover, the lower bound applies even if only queries of length
exactly L are to be answered. We find this extremely surprising (and disappointing).

In light of the strong lower bounds, we set out to improve over the Ω(L) query time of the trivial solution
above, while maintaining optimal space. In Section 3 we present a data structure with O(1) query time and
space n lg(L/ε) + o(n lg(L/ε)) + O(n) bits, thus matching the lower bound up to a lower order term
whenever L/ε = ω(1). The data structure answers a query of any length ` ≤ L, not only those of length
exactly L, with false positive rate ε`/L. As a building block in our data structure, we also design a new
succinct data structure for (non-approximate) range emptiness queries which may be of independent interest.
This data structure uses n lg(U/n) +O(n lgδ(U/n)) bits of space for storing n points from a universe [U],
while answering queries in constant time. Here δ > 0 is an arbitrarily small constant. The data structure is
thus optimal up to the lower order additive term in the space usage. Moreover, it also supports reporting all
k points inside a query interval in O(k) time, thus providing a succinct 1d range reporting data structure.
The best previous data structure was a non-succinct O(n lgU) bit data structure of Alstrup et al. [2].

As an additional result, we also prove in Section 2.1 that data structures with two-sided error ε > 0 (i.e.,
for non-empty intervals, we must answer non-empty with probability 1− ε), must use space

n lg(L/ε)−O(n)

bits when 0 < ε < 1/ lgU . Thus for small error rate, only lower order additive savings in space are possible.
For 1/ lgU < ε < 1/2− Ω(1), we get a space lower bound of

Ω

(
n lg(L lgU)

lg1/ε lgU

)
bits, thus ruling out hope of large space savings even with two-sided errors. Again, these lower bounds hold
even if only query intervals of length exactly L are to be answered.

Related Work on Approximate Membership. Bloom filters [6] are the first approximate membership
data structures, requiring n lg(1/ε) lg e space and having a lookup time of lg(1/ε). They have found a vari-
ety of applications both in theory and practice, and we refer the reader to [7] for an overview of applications.
In [10] the space usage was reduced to near-optimal (1 + o(1))n lg(1/ε) bits and the lookup time to an
optimal O(1), while also supporting insertions/deletions in amortized expected O(1) time. In the static case
the space usage has been further reduced to o(n) bits from the lower bound [5].

The dynamic case where the size n of the set S is not known in advance was handled in [11], where it
was shown that the average number of bits per element in an optimal data structure must grow with lg lg n.
A closely related problem to approximate membership is the retrieval problem, where each element has an
associated data, and data must be retrieved correctly only for members. In [5] the authors achieve a query
time of O(1) using a space that is within o(n) of optimal.

2 Lower Bounds

In this section, we prove a lower bound on the space needed for any data structure answering approximate
range emptiness queries. While the upper bounds presented in Section 3 guarantees a false positive rate of

2

ε for any query interval of length up to a predefined value L, the lower bound applies even if only length L
intervals are to be answered. More formally, we show:

Theorem 1. For the approximate range emptiness problem on n points from a universe [U], any data
structure answering all query intervals of a fixed length L ≤ u/5n with false positive rate ε > 0, must use
at least

s ≥ n lg

(
L1−O(ε)

ε

)
−O(n)

bits of space.

The proof of Theorem 5 is based on an encoding argument. The high level idea is to use an approximate
range emptiness data structure to uniquely encode (and decode) every set of n points into a bit string whose
length depends on the space usage and false positive rate of the data structure. Since each point set is
uniquely encoded, this gives a lower bound on the size of the encoding and hence the space usage of the
data structure.

For technical reasons, we do not encode every set of n points, but instead only point sets that are well-
separated in the following sense: Let I be the set of all L-well-separated sets of n points in [U], where a set
S of n points is L-well-separated if:

• For any two distinct x, y ∈ S, we have |x− y| ≥ 2L.

• For any x ∈ S, we have x ≥ 2L− 1 and x ≤ U − 2L.

Note that there are many L-well-separated when L is not too close to U/n:

Lemma 2. There are at least ((U − 4nL)/n)n L-well-separated point sets for any L ≤ U/4n.

Proof. Consider picking one point at a time from U , each time making sure the constructed set is L-well-
separated. For the i’th point, i = 1, . . . , n, there are U − 4L− 4(i− 1)L = U − 4iL valid choices for the
location of the i’th point. Since the same set of points can be constructed in n! ways using this procedure,
there are at least

(U − 4nL)n

n!
≥
(
u− 4nL

n

)n
.

L-well-separated point sets.

We now set out to encode any set S ∈ I in a number of bits depending on the performance of a given
data structure. Assume for simplicity that U and L are powers of 2. The encoding algorithm considers two
carefully chosen sets of intervals:

• The top intervals is the set of U/L length L intervals T = {T0, . . . , TU/L−1} of the form

Ti = [iL; (i+ 1)L− 1].

• For each x ∈ S and i = 1, . . . , lgL− 1, the level-i-covering intervals of x are the two intervals:

`i(x) = [bx/2ic2i + 2i−1 − L; bx/2ic2i + 2i−1 − 1]

ri(x) = [bx/2ic2i + 2i−1; bx/2ic2i + 2i−1 + L− 1]

For intuition on why we take interest in these intervals, observe the following:

3

Lemma 3. Consider the binary representation of a point x ∈ S. If the i’th least significant bit of x is 0
(counting from i = 1), then x is contained in `i(x). Otherwise x is contained in ri(x). Furthermore `i(x)
and ri(x) contain no other points from S and any top interval Tj contain at most one point from S.

Proof. Rewrite x = bx/2ic · 2i + (x mod 2i). If the i’th least significant bit of x is 0 then (x mod 2i) ∈
{0, . . . , 2i−1 − 1}, i.e. x ∈ [bx/2ic · 2i; bx/2ic · 2i + 2i−1 − 1] ⊆ `i(x). Otherwise (x mod 2i) ∈
{2i−1, . . . , 2i − 1} implying x ∈ [bx/2ic · 2i + 2i−1; bx/2ic · 2i + 2i − 1] ⊆ ri(x).

Next, observe that the intervals `i(x) and ri(x) have length L and both have an endpoint of distance
less than 2i+1 ≤ L from x. Since S is L-well-separated, it follows that no other points can be contained
in `i(x) and ri(x). For the top intervals Tj , the claimed property similarly follows from S being L-well-
separated.

We are ready to give the encoding and decoding algorithms for all L-well-separated point sets S ∈ I.
For the encoding and decoding procedures, we assume the existence of a data structure D with s bits of
space and false positive rate ε > 0 for query intervals of length L.

Encoding Algorithm. In this paragraph we present the encoding algorithm. Let S ∈ I be an L-well-
separated point set. Observe that if we run the randomized construction algorithm of D on S, we are
returned a (random) memory representation M ∈ {0, 1}s. For the memory representation M, the answer
to each query is fixed, i.e. it is the randomized choice of M that gives the false positive rate of ε for
each query interval of length L (the memory representation encodes e.g. a particular hash function from
a family of hash functions). Letting A(M) denote the number of false positives amongst the top intervals
T , we get from linearity of expectation that E[A(M)] ≤ εU/L. Similarly, let B(M) denote the number
of false positives amongst all the intervals `i(x) and ri(x) for x ∈ S and i ∈ {1, . . . , lgL − 1}. We have
E[B(M)] ≤ εn lgL since precisely n lgL of the intervals `i(x) and ri(x) are empty. Since both A(M) and
B(M) are non-negative, it follows from Markov’s inequality and a union bound that:

Pr
M

[
A(M) ≤ 1

1− 1/γ
· εU/L

∧
B(M) ≤ γεn lgL

]
> 0

for any parameter γ > 1. Since the probability is non-zero, there exists a particular memory representation
M∗ ∈ {0, 1}s for which:

A(M∗) ≤ 1

1− 1/γ
· εU/L

∧
B(M∗) ≤ γεn lgL.

The encoding consists of the following:

1. The s bits of M∗.

2. Let T ∗ be the subset of T that return non-empty on M∗. We encode the set of n top intervals TS
containing S, where TS is specified as an n-sized subset of T ∗. This costs lg

(|T ∗|
n

)
= lg

(
A(M∗)+n

n

)
bits.

3. For each interval Tj ∈ TS in turn (from left to right), let x be the point from S in Tj . For i =
lgL−1, . . . , 1 in turn, check whether both `i(x) and ri(x) return non-empty onM∗. If so, we append
one bit to our encoding. This bit is 0 if x ∈ `i(x) and it is 1 if x ∈ ri(x). Otherwise we continue
without writing any bits to the encoding. In total this costs exactly B(M∗) bits (each bit can be
charged to exactly one false positive).

This concludes the description of the encoding algorithm. Next we show that S can be uniquely recov-
ered from the encoding.

4

Decoding Algorithm. In the following, we show how we recover an L-well-separated point set from the
encoding described in the paragraph above. The decoding algorithm is as follows:

1. Read the s first bits of the encoding to recover M∗.

2. Run the query algorithm for every query in T with the memory representation M∗. This recovers T ∗.

3. From T ∗ and the bits written in step 2 of the encoding algorithm, we recover TS .

4. For each interval Tj ∈ TS (from left to right), let x be the point from S in Tj . This step recovers
x as follows: From Tj , we know all but the lgL − 1 least significant bits of x. Now observe that
the definition of `lgL−1(x) and rlgL−1(x) does not depend on the lgL − 1 least significant bits of
x, hence we can determine the intervals `lgL−1(x) and rlgL−1(x) from Tj . We now run the query
algorithm for `lgL−1(x) and rlgL−1(x) with M∗ as the memory. If only one of them returns non-
empty, it follows from Lemma 3 that we have recovered the (lgL− 1)’st least significant bit of x. If
both return non-empty, we read off one bit from the part of the encoding written during step 3 of the
encoding algorithm. This bit tells us whether x ∈ `lgL−1(x) or x ∈ rlgL−1(x) and we have again
recovered the next bit of x. Note that we have reduced the number of unknown bits in x by one and
we now determine `lgL−2(x) and rlgL−2(x) and recurse. This process continues until all bits of x
have been recovered and we continue to the next Tj′ ∈ TS .

Thus we have shown how to encode and decode any L-well-separated point set S. We are ready to
derive the lower bound.

Analysis. The size of the encoding is

s+ lg

(
A(M∗) + n

n

)
+B(M∗) ≤

s+ lg

(1
1−1/γ · εU/L+ n

n

)
+ γεn lgL ≤

s+ n lg

e
(

1
1−1/γ · εU/L+ n

)
n

+ γεn lgL ≤

s+ n lg

(
εU

(1− 1/γ)nL

)
+ γεn lgL+O(n) =

s+ n lg

(
εU

(1− 1/γ)nL1−εγ

)
+O(n)

bits. But from Lemma 2 we have that there are at least ((U−4nL)/n)n distinct L-well-separated point sets.
Hence we must have

s+ n lg

(
εU

(1− 1/γ)nL1−εγ

)
+O(n) ≥

n lg

(
U − 4nL

n

)
which implies

s ≥ n lg

(
(1− 1/γ)L1−εγ(U − 4nL)

εU

)
−O(n).

5

For L ≤ U/5n, this is:

s ≥ n lg

(
(1− 1/γ)L1−εγ

ε

)
−O(n).

Setting γ to a constant, this simplifies to

s ≥ n lg

(
L1−O(ε)

ε

)
−O(n),

which completes the proof of Theorem 5.

2.1 Extension to two-sided errors.

In this section, we extend the lower bound above to the case of two sided error, i.e. we have both false
positives and false negatives. The result of the section is the following:

Theorem 4. For the approximate range emptiness problem on n points from a universe [U], any data
structure answering all query intervals of a fixed length L ≤ u/5n with two-sided error rate ε, must use at
least

s ≥ n lg(L/ε)−O(n)

bits of space when 0 < ε < 1/ lgU , and at least

s = Ω

(
n lg(L lgU)

lg1/ε lgU

)

bits for 1/ lgU ≤ ε ≤ 1/2− Ω(1).

As in the previous section, we use an approximate range emptiness data structure to encode any set of
L-well-separated points. The encoding procedure follows that of the one-sided error case closely and we
assume the reader has read Section 2.

So assume we are given an approximate range emptiness data structure D with s bits of space and two-
sided error rate 0 < ε ≤ 1/2 − Ω(1). Our first step is to reduce the error rate using a standard trick: Upon
receiving an input set of points S, implement k copies of D on S, where the randomness used for each copy
is independent. When answering a query, we ask the query on each copy of the data structure and return the
majority answer. Since ε < 1/2− Ω(1), it follows from a Chernoff bound that the error rate is bounded by
εO(k). Thus we now have a data structure using ks bits of space with error rate δ = εO(k) for a parameter
k ≥ 1 to be determined later.

Encoding Algorithm. Let S ∈ I be an L-well-separated point set to encode. Define T , `i(x), ri(x), M,
A(M) and B(M) as in Section 2. Define C(M) as the number of false negatives amongst queries in T and
F (M) as the number of false negatives amongst queries `i(x) and ri(x) over all i and x. From Markov’s
inequality and a union bound, we conclude that there must exist a set of memory bits M∗ ∈ {0, 1}ks for
which:

• A(M∗) ≤ 4δU/L.

• B(M∗) ≤ 4δn lgL.

• C(M∗) ≤ 4δn.

6

• F (M∗) ≤ 4δn lgL.

The encoding algorithm first writes down some bits that allow us to correct all the false negatives. Following
that, it simply writes down the encoding from the previous section (since we have reduced the decoding
problem to the case of no false negatives). Describing the false negatives is done as follows:

1. First we write down lg(U/L) bits to specify C(M∗). Following that, we encode the C(M∗) false
negatives amongst T using lg

(U/L
C(M∗)

)
bits.

2. Secondly, we spend lg(n lgL) bits to specify F (M∗). We then use lg
(2n lgL
F (M∗)

)
bits to specify the false

negatives amongst `i(x) and ri(x). Note that we avoid the explicit encoding of `i(x) and ri(x) by
mapping a false negative `i(x) to the number Γ(`i(x)) = rankS(x) · 2 lgL+ 2(i− 1) and ri(x) to the
number Γ(ri(x)) = rankS(x) · 2 lgL+ 2(i− 1) + 1. Here rankS(x) denotes the number of elements
in S smaller than x. Note that Γ(`i(x)),Γ(ri(x)) ∈ [2n lgL] and the claimed space bound follows.

3. Lastly, we run the entire encoding algorithm from Section 2 assuming the false negatives have been
corrected.

Decoding Algorithm. In the following, we describe the decoding algorithm.

1. From the bits written in step 1 of the encoding procedure, we correct all false negatives amongst
queries in T .

2. From the secondary encoding, we recover M∗. Since we have corrected all false negatives in T , we
also recover TS using steps 2-3 of the decoding procedure in Section 2.

3. We now run step 4 of the decoding algorithm in Section 2. Observe that for each x we are about to
recover, we know rankS(x). Therefore we can use the bits written in step 2 of the encoding algorithm
above to correct all false negatives amongst queries `i(x) and ri(x). Following that, we can finish
step 4 of the decoding algorithm in Section 2 as all false negatives have been corrected.

Analysis. Examining the encoding algorithm above and the one in Section 2, we see that the produced
encoding uses:

ks+ lg

(
U/L

C(M∗)

)
+ lg

(
2n lgL

F (M∗)

)
+

lg

(
A(M∗) + n

n

)
+B(M∗) +O(lg n)

bits. By the arguments in Section 2, this is bounded by:

ks+ lg

(
U/L

C(M∗)

)
+ lg

(
2n lgL

F (M∗)

)
+

n lg

(
δU

4nL1−4δ

)
+O(n).

Using the bounds on C(M∗) and F (M∗), we see that this is at most:

ks+ 4δn lg

(
U

Lδn

)
+ 4δn lgL lg

(e
2δ

)
+

n lg

(
δU

4nL1−4δ

)
+O(n).

7

Fixing k = max{1,Θ(lg1/ε lgU)}, the second and third term becomes O(n) and we get:

ks+ n lg

(
δU

4nL1−4δ

)
+O(n).

For L ≤ U/5n we have at least (U/5n)n distinct L-well-separated point sets, thus we must have:

ks ≥ n lg

(
L1−O(δ)

δ

)
−O(n)⇒

s ≥
n lg

(
L1−O(1/ lgU)

min{ε,1/ lgU}

)
k

−O(n)⇒

s ≥
n lg

(
L

min{ε,1/ lgU}

)
k

−O(n).

When ε < 1/ lgU we get k = 1 and this simplifies to

s = n lg(L/ε)−O(n),

and for ε > 1/ lgU it becomes:

s = Ω

(
n lg(L lgU)

lg1/ε lgU

)
.

3 Upper Bounds

In this section we describe our approximate range emptiness data structures. The data structure consists of
a (non-approximate) succinct range emptiness data structure applied to the input points after they have been
mapped to a smaller universe. More specifically, we use a carefully chosen hash function to map the input
points to a universe of size r = nL/ε, and store them in a range emptiness data structure that has constant
query time and uses n lg(U/n) + O(n lgδ(U/n)) bits of space for storing n points from a universe of size
U . This gives us our main upper bound result.

Theorem 5. For any ε > 0, L and n input points from a universe [U], there is a data structure that uses
n lg(L/ε)+O(n lgδ(L/ε)) bits of space, where δ > 0 is any desired constant, that answers range emptiness
queries for all ranges of length at most L in constant time with a false positive rate of at most ε.

3.1 Universe Reduction.

Let r = nL/ε and choose u : [U/r]→ [r] from a pairwise independent family. Now define a hash function
(similar in spirit to the “non-expansive” hash functions of Linial and Sasson [9]) that preserves locality, yet
has small collision probability:

h(x) = (u(bx/rc) + x) mod r .

Lemma 6. For x1 6= x2 we have Pr[h(x1) = h(x2)] ≤ 1/r.

Proof. Collision happens if and only if u(bx1/rc) − u(bx2/rc) ≡ x2 − x1 mod r. If bx1/rc = bx2/rc
then x2 − x1 6≡ 0 mod r, so the collision probability is zero. Otherwise, since u is pairwise independent
u(bx1/rc)− u(bx2/rc) is equal to a given fixed value with probability exactly 1/r.

8

We store h(S) ⊆ [r] in a (non-approximate) range emptiness data structure. To answer an approximate
range membership query on an interval I , observe that the image h(I) will be the union of at most two
intervals I1, I2 ⊆ [r]. If either of these intervals are non-empty in h(S) we report “not empty”, otherwise
we report “empty”. It is clear that there can be no false negatives. False positives occur when I ∩ S = ∅ but
there is a hash collision among a point x ∈ S and a point y ∈ I . We can bound the false positive rate by a
union bound over all possible collisions:∑

x∈S

∑
y∈I

Pr[h(x) = h(y)] ≤ nL/r ≤ ε .

3.2 Range Emptiness Data Structure.

We first describe a range emptiness data structure for size-n subsets of [U] that answers queries in constant
time and uses n lgU+O(n lgδ U) bits, where δ > 0 is any desired constant. Later, we show how to decrease
the space usage to n lg(U/n) + O(n lgδ(U/n)) bits. The data structure consists of the sorted list of points
plus an indexing data structure, namely, the weak prefix search data structure of [4, Theorem 5, second
part]. A weak prefix query on a set of points in [U] is specified by a bit string p of length at most lgU and
returns the interval of ranks of the input points that have prefix p (when written in binary). If no such points
exist the answer is arbitrary. Given a query range [a; b] we compute the longest common prefix p of the bit
representations of a and b. This is possible in O(1) time using a most significant bit computation. Observe
as in [2] that h(S) ∩ [a; b] is non-empty if and only if at least one of the following holds:

• A largest point in h(S) prefixed by p ◦ 0 exists, and is not smaller than a, or

• A smallest point in h(S) prefixed by p ◦ 1 exists, and is not greater than b.

We can determine if each of these holds by a weak prefix query, by considering the points in the sorted list
at the position of the maximum and minimum returned ranks. If there are no points with prefix p ◦ 0 or
p ◦ 1 the range returned by the weak prefix search is arbitrary, but this is no problem since we can always
check points for inclusion in [a; b]. The space usage for the weak prefix search data structure, in the case of
constant query time, can be made O(n lgδ(U)) bits for any constant δ > 0.

In order to reduce the space usage, we use a standard trick and split the universe [U] into n subranges
s1, . . . , sn of size U/n. We need the well known succinct rank and select data structures that stores a bit
array of size n using n + o(n) bits of space and supports rank and select queries in constant time [12].
We construct a bit array of size n that has a one at position i if there is an input point in the range si and
zero otherwise, and store it in a rank/select data structure D1. We store the data structure from above for
each non-empty range si (with universe size U/n) using exactly ni(lg(U/n) + α(lgδ(U/n))) space where
ni is the number of points in si and α > 0 is a constant that depends on the data structure. The data
structures are stored consecutively in an array Ads. To locate the data structure for any range si, all we
need is to count the number of points in the ranges sj for j < i and scale that number accordingly. For
this purpose we store another array of 2n bits that for each non-empty range si stores a one followed by
ni zeros in a rank/select data structure D2. For a given range si we can compute the starting position for
the corresponding data structure in Ads as follows. We compute the number of non-empty ranges sj with
j < i using a rank query for i in D1. Then we do a select query in D2 for the returned rank and subtract the
queried rank from the result to get the number of points in sj with j < i. Finally we scale this number with
(lg(U/n) + α(lgδ(U/n))). The total space usage becomes n lg(U/n) +O(n lgδ(U/n)) bits.

A query range is naturally split into at most three parts, a part consisting of a sequence of ranges,
and maximally two parts that do not cover an entire range. If we find a point in any of them we report
“not empty” and “empty” otherwise. The part spanning entire ranges is answered by computing the rank
difference (number of input points) between the endpoint in the rightmost range and the starting index in

9

the leftmost range spanned by the query with the rank/select data structure. The non-spanning parts of the
query are answered by the data structures stored for the corresponding subranges (which we locate in Ads
as described above). The query takes constant time, since answering each part takes constant time.

Extension to Range Reporting. We note that the above data structure supports reporting all k points
inside a query interval in O(k) time: Observe first that when the above data structure returns “not empty”,
it actually finds a point p inside the query interval as well as p’s location in the sorted list of all points in
p’s subrange. We scan these points in both the left and right direction, starting at p, and stop when a point
outside the query range is encountered. If all points preceding (or following) p in the subrange are reported,
we can find the next subrange to report from using the rank and select data structure D1 on the non-empty
subranges (we know the rank of the current subrange). We conclude that we spend O(1) time per reported
point and thus O(k) time in total.

References

[1] K. Alexiou, D. Kossmann, and P.-Å. Larson. Adaptive range filters for cold data: avoiding trips to
siberia. Proceedings of the VLDB Endowment, 6(14):1714–1725, 2013.

[2] S. Alstrup, G. S. Brodal, and T. Rauhe. Optimal static range reporting in one dimension. In Proceedings
of the 33rd ACM Symposium on Theory of Computing, pages 476–482, 2001.

[3] B. Baig, H. Chan, S. McCauley, and A. Wong. Range queries using bloom filters.
http://www.scribd.com/doc/92463819/Ranged-Queries-Using-Bloom-Filters-Final.

[4] D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna. Fast prefix search in little space, with applications.
In Proceedings of the 18th Annual European Symposium on Algorithms, pages 427–438, 2010.

[5] D. Belazzougui and R. Venturini. Compressed static functions with applications. In Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 229–240. SIAM, 2013.

[6] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communications of the
ACM, 13(7):422–426, 1970.

[7] A. Broder and M. Mitzenmacher. Network applications of bloom filters: A survey. Internet mathemat-
ics, 1(4):485–509, 2004.

[8] L. Carter, R. W. Floyd, J. Gill, G. Markowsky, and M. N. Wegman. Exact and approximate membership
testers. In Proceedings of the 10th ACM Symposium on Theory of Computing, pages 59–65, 1978.

[9] N. Linial and O. Sasson. Non-expansive hashing. In Proceedings of the 28th ACM Symposium on
Theory of Computing, pages 509–518, 1996.

[10] A. Pagh, R. Pagh, and S. S. Rao. An optimal bloom filter replacement. In Proceedings of the 16th
annual ACM-SIAM symposium on Discrete algorithms, pages 823–829. Society for Industrial and
Applied Mathematics, 2005.

[11] R. Pagh, G. Segev, and U. Wieder. How to approximate a set without knowing its size in advance.
In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 80–89.
IEEE, 2013.

[12] M. Pǎtraşcu. Succincter. In Proc. 49th IEEE Symposium on Foundations of Computer Science (FOCS),
pages 305–313, 2008.

10

