
Load Balanced Short Path Routing in Large-Scale Wireless
Networks Using Area-Preserving Maps

ABSTRACT
Load balanced routing in a network, i.e., minimizing the maximum
traffic load any node carries, is a well known NP-hard problem.
Finding practical algorithms remains a long standing challenge. In
this paper we propose greedy routing using virtual coordinates that
achieves both small path stretch ratio (compared to shortest path)
and small load balancing ratio (compared to optimal load balanced
routing), in a large scale wireless sensor network deployed densely
inside a geometric domain with complex shape. We first show that
on a disk there are multiple greedy algorithm achieving constant
path stretch and constant load balancing ratio. We provide one such
routing scheme on the disk that has a stretch ratio of at most 2,
and under which the maximum load is a factor 4

√
2 smaller than

the maximum load under shortest path routing. This is the first
simple routing scheme with a small stretch that has been proven to
outperform shortest path routing in terms of load balancing.

Then we transform a network of arbitrary shape to a disk by an
area preserving map φ. We show that both the path length and the
maximum traffic load in the original network only increases by an
additional factor of d2, where d is the maximum length stretch of φ.
Combined with the result on a disk we again achieve both bounded
stretch and bounded load balancing ratio. Our simulation results
confirmed the superior performance over shortest path routing and
prior greedy routing methods.

1. INTRODUCTION
In this paper we study the problem of greedy routing in a large

scale wireless sensor networks and focus on the issue of load bal-
ancing. While reducing maximum traffic load is a general objec-
tive for most networking scenarios, in a battery-powered wireless
sensor network this problem becomes more critical. Any subset
of nodes used too much faces the risk of running out of battery
prematurely; the functionality of the network may dramatically de-
teriorate even when many nodes still have ample battery life.

The maximum traffic load in a network depends on both the traf-
fic pattern (i.e., the distribution of sources and destinations) and the
topology of the network. When all messages are from the same
source and/or same destination, the highest traffic is around the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

common ‘sink’. This phenomena is termed the ‘energy hole’ prob-
lem and has been studied extensively in the literature [16]. In this
paper we focus on the case of load balancing for general point to
point traffic. This models the scenario when the sensor nodes are
tightly embedded in the physical space in which human users re-
side. Users can query a nearby sensor and issue a message to a
particular target sensor retrieving relevant information. This is also
a particularly interesting scenario in theory as the topology of the
network plays an important role in deciding the max load. Even
when traffic pattern is uniform (source and destination chosen uni-
formly randomly) there can still be overly loaded nodes. In some
cases the max load is mainly caused by the network topology (e.g.,
the nodes in a narrow neck of the network) – and there is little one
can do to reduce the max load by different routing algorithms. In
some other cases the max load is mainly caused by the routing algo-
rithm (e.g., the overloaded center created by shortest path routing
in a circular shaped network). This is what we focus on. We would
like to design good routing scheme that achieve or approximate the
best max load possible.

We observe that, in order to alleviate load accumulation, we need
to spread out traffic, which leads to increased path length. Ob-
viously using short paths is desirable for low delay. In fact, the
two objectives, reducing max traffic load and reducing path lengths,
have an interesting relationship. On one hand they are in agreement
– using paths that are too long will elevate the total traffic load of all
nodes, such that any routing algorithm has to induce heavy load on
some nodes by pigeon hole principle. On the other hand, the two
objectives are in conflict – if we can only use shortest paths, we
have little freedom in choosing paths to spread out traffic. Indeed it
has been shown that in a unit disk graph there is a trade-off between
the two objectives. One cannot have both load balancing ratio and
path stretch bounded by constants simultaneously, without addi-
tional constraints on the network topology [10]. This motivates us
to investigate what type of network topology can support both good
load balancing and short paths simultaneously and how to exploit
such structural properties for a practical routing solution.

Our Approach We consider networks of wireless nodes uniformly
deployed inside a complex geometric domain Ω and consider greedy
routing using virtual coordinates. The case of densely deployed
sensors inside a geometric domain is an important and natural sce-
nario when sensor networks scale large. The use of greedy routing
will make the solution to be practical.

In this paper we assume that the traffic pattern is modeled by
a joint distribution Π of the source destination pair. We classify
the network topology by the shape of Ω and ask for routing solu-
tions with both good load balancing property and bounded stretch.
Nevertheless, load balanced routing even for dense networks inside
a simply shape with uniform traffic pattern, without constraints on

path stretch, is still very challenging. No good approximations (bet-
ter than the general case) are known. Existing work mainly focused
on simple shapes such as strips, disks or squares; or focused on re-
ducing max load in certain parts of the network such as interior hole
boundaries. We are the first to study load balancing of networks in-
side an irregular domain.

Throughout the paper we use the path stretch as the worst case
ratio of the routing path length by our algorithm and the shortest
path length for the same source destination pair. We use the load
balancing ratio as the ratio of the maximum traffic load by our al-
gorithm and the maximum traffic load of the optimal load balanced
routing algorithm (i.e., the minimum of maximum load possible),
for the same traffic pattern Π.

The main tool we use is area-preserving maps. Under an area-
preserving map φ : Ω → Ω′, an ε-area ball is mapped to a piece
(not necessarily round) with area ε. The main theoretical result in
this paper is the following. Suppose we use a routing algorithm Γ
on the original domain Ω with traffic load `Γ(p) on node p. Ap-
plying the area preserving map φ, we obtain a routing algorithm Γ′

on the target domain Ω′. We prove that the traffic load `Γ′ at point
φ(p) is bounded by d · `Γ(p) from above and `Γ(p)/d from below,
in which d is the maximum length stretch of the map φ.

Applying the above theorem in different directions allows us to
prove upper bound on the traffic load in our algorithm, as well as
lower bound on the max traffic load in the optimal load balanced
routing. Altogether this allows us to transfer a load balanced short
path routing algorithm on Ω′ to a load balanced short path routing
algorithm on Ω. Specifically, if Γ′ is has load balancing ratio c and
path stretch of λ in domain Ω′, we prove that Γ has load balancing
ratio c · d2 and path stretch λ · d2 in Ω.

We first look at the case of a disk, which is an example of a
good network topology. If we send one message between each pair
of nodes in a disk shape network using shortest path routing, the
maximum traffic load scales in the order of O(n

√
n), which is in

fact already asymptotically optimal. We can further improve it by
using the Lambert Azimuthal projection to map a unit disk to a
sphere. By using greedy routing on the spherical coordinates we
can reduce the maximum traffic load even further while only using
paths of stretch at most 2. Furthermore, we prove that this routing
scheme is a factor 4

√
2 better than shortest path routingin terms of

load balancing, making it the first routing scheme provably better
than shortest path routing (using the definition of load in Definition
1).

For a network inside a simply connected domain Ω of an arbi-
trary shape, we again use area preserving maps to create virtual
coordinates of good stretch and good load balancing ratio. We take
a specific area preserving map φ from Ω to a disk and then apply
the above mentioned routing algorithm in a disk. Therefore, we
can compute virtual coordinate inside the disk for each node x in
Ω, with which greedy routing achieves path stretch of O(d2(φ))
and load balancing ratio of O(d2(φ)). Here d(φ) is the maximum
length stretch of the mapping φ. In particular, d(φ) gives an effec-
tive way of classifying the topology of the network. Any domain
that admits an area preserving map φ with constant d(φ) will sup-
port greedy routing with constant path stretch and constant load
balancing ratio. This provides a qualitative way to measure how
the topology of the network affects its load balancing property.

We summarize our contribution below.

1. Establish connection of area-preserving maps to load bal-
anced routing,

2. Provide a distributed, greedy routing scheme on any sim-
ply connected domain that has a worst case stretch factor of

O(d2(φ)) and worst-case load balancing ratio of O(d2(φ)),
where dφ is the maximum length stretch of the area-preserving
map from the domain to the disk.

3. Provide a routing scheme on the disk that uses routes at most
twice the length of the shortest path, and is a factor 4

√
2

better in load balancing than shortest path routing.

Note that the average load under the shortest path routing scheme
is a lower bound on the maximum load under any routing scheme.
Using this quantity, the load balancing ratios of both shortest path
routing scheme and our routing scheme can be calculated, and they
will differ by a factor 4

√
2 .

2. RELATED WORK
Load balanced routing on graphs. In the field of networking al-
gorithms, load balanced routing on a graph with given source desti-
nation pairs is a long standing problem. One way to formulate this
problem is to select routes that minimize congestion (the maximum
number of messages that any node/link carries), termed the unsplit-
table flow problem. Solving this problem optimally is NP-hard even
in very simple networks (such as grid). The best approximation al-
gorithm has an approximation factor ofO(logn/ loglogn) [22,23]
in a network of n vertices. It is also shown that getting an approxi-
mation within factor Ω(loglogn) is NP-hard [2]. Another popular
way to formulate the problem is to consider node disjoint or edge
disjoint paths that deliver the largest number of given source desti-
nation pairs. This is again NP-hard [15] and the best approximation
factor known is O(

√
n) [6]. It is NP-hard to approximate within a

factor of Ω(log1/2−ε n) [7]. These approximation algorithms are
mostly only of theoretical interest. They require global knowledge
and are not suitable for distributed settings.

Load balancing routing on simple shapes. In [9], a greedy rout-
ing scheme that achieves both constant stretch factor and constant
load balancing ratio is proposed, but only for nodes distributed in a
narrow strip. In a general unit disk graph setting, there is a tradeoff
between the stretch factor and load balancing ratio [10].

Popa et al. [21] studied load balanced routing in a disk. Under
uniform traffic pattern, the center is more loaded than nodes near
the boundary. By using numerical solvers, they had a numerical
approximation of the optimal load balanced routing solution. They
also proposed a practical algorithm by using stereographic projec-
tion to map the network on a hemisphere. Routing is guided by the
spherical distance in a greedy manner. Improved load balancing is
shown as the routes are made to ‘curve’ around the network center.
But no theoretical analysis is given.

Mei and Stefa [18] studied load balancing for networks inside a
square and propose to use the ‘outer space’ by creating four copies
of the network, wrapped up as a topological torus. The destination
has four images and greedy routing is done by using coordinates on
the torus towards a randomly selected image of the destination. On
the original network, it is as if we are reflecting on the boundaries.
The idea is that through mapping on a torus the original boundary
or center of the square are essentially removed so they should not
present heavy load. By evaluations we found out that the traffic
load on the nodes are indeed more even, but unfortunately the traf-
fic at all nodes has been greatly elevated as routing paths through
reflections are on average much longer than shortest paths.

Yu et al. [26] examined a network inside a simply connected do-
main and used Ricci flow to generate Thurston’s embedding as the
skeleton of a convex polytope. The intuition is to map the network
on a sphere (or half sphere) as routing on a sphere has no conges-
tion due to perfect symmetry. The choice of a convex polytope is

to ensure that greedy routing guarantees delivery [19]. This per-
forms well in simulations but there is no theoretical guarantee on
the worst case congestion.
Reducing congestion on centers or hole boundaries. A number
of previous works focused on reducing traffic load on hole bound-
aries. This is because traditional geographical routing [8, 14] tends
to send messages to nodes near hole boundaries. In [24], a network
of multiple holes is converted to the covering space, such that one
maps the network to the interior of each hole, filling it up. Again,
since the boundaries are removed, greedy routing, when touching
a boundary node, does not follow the boundary but get reflected
away from the boundary. Simulation results show that the traffic
load on boundaries are greatly reduced. But the average traffic load
is increased as routing paths are made longer.

In [5], the focus is to reduce traffic load near the medial axis,
which is a generalization of the center of a disk in a domain of
general shape and is likely to attract traffic load. The proposed
routing algorithm will follow a path parallel to the medial axis or
orthogonal to the medial axis, minimizing the intersections with the
medial axis. Again no theoretical guarantee is given.

3. THEORY OF LOAD BALANCING AND
AREA-PRESERVING MAPS

3.1 Definitions
In this section we first describe load balancing in the continuous

setting for which we will present our theoretical results. Through-
out the paper we consider a simply connected domain Ω (i.e., no
holes). We consider the traffic pattern as modeled by a joint dis-
tribution Π on the source destination pair. A routing scheme Γ
describes how to find a path between two points inside Ω. For ev-
ery pair of points (p, q) inside Ω, Γ specifies a path γp,q ⊂ Ω that
connects p to q. The set Γ is the collection of all such paths.

In the discrete graph setting, the traffic load is taken as the num-
ber of messages delivered along each edge/through each node. In
the continuous setting, however, there could be various definitions
of traffic load, e.g. [11,12,20,21]. In [11] load is presented as a flux
and load balancing is presented as a min max problem. We will use
the definition of load presented in [21]. The definition we present
below is essentially the same, but described in a way more suited to
our purposes. One should note that although these definitions are
different, they nevertheless are comparable and the basic idea be-
hind them is the same. Furthermore, the discrete definitions closely
approximate the continuous ones in the case of a dense network.

Definition 1 (Load). Given a traffic pattern Π and a routing scheme
Γ for Ω, for any region A ⊂ Ω, define the load of A (denoted as
`Γ(A)) under the traffic pattern Π by the following procedure:

1. Choose n source-destination pairs {(ai, bi)}ni=1 from the dis-
tribution Π. For all such pairs, find γi, the paths as deter-
mined by Γ.

2. Let Xn(A) be the average length of intersection of the γi
with A.

3. Define `Γ(A) = limn→∞
Xn(A)
Area(A)

. Here Area(A) denotes
the usual Euclidean area of the region A.

Next, define the load at a point p in the domain by:

1. Choose a nested sequence of neighborhoods An whose in-
tersection is p and which satisfy Area(An)→ 0 as n→∞;

2. Define `Γ(p) = limn→∞ `Γ(An).

Clearly the traffic load depends on the specified traffic pattern
Π. Throughout the paper we will fix the traffic pattern Π unless
specified otherwise. Denote the maximum load over all p ∈ Ω
under Γ as `Γ. The optimal load balanced routing problem is to
find Γ∗ which minimize `Γ∗ . We define the load balancing ratio of
a routing scheme Γ as `Γ/`Γ∗ . For a particular routing scheme Γ,
denote by |γpq| the length of the routing path γpq from p to q and
denote by |pq| the shortest path length. We define the path stretch
of Γ as

max
p,q∈Ω

|γpq|/|pq|.

Definition 2 (Area Preserving Map). Given two domains Ω and
Ω′ in Rn with the same area, a map φ from Ω to Ω′ is area pre-
serving if Area(φ−1(A)) = Area(A) for every subregion A of Ω.
Area(A) is the area of the region A.

The area-preserving map can be written in axis-parallel coordin-
ates as φ : (x, y) → (u, v). The Jacobian matrix J(φ) is a 2 × 2
matrix of the partials of u and v with respect to x and y. Now, φ is
area-preserving, which is equivalent to the determinant of J(φ) be-
ing identically 1 at all points in the domain. Let λ1(x, y), λ2(x, y)
denote the two eigenvalues of J(φ) (not necessarily real). Note that
λ1λ2 = 1 at every point, and hence |λ1| = 1/|λ2|.

Let d(x, y) = max(|λ1(x, y)|, |λ2(x, y)|) denote the maximum
length distortion at point (x, y). When p = (x, y), we will just
write d(p). Let

d(φΩ,Ω
′) = sup

p∈Ω

d(p) (1)

d(φ) is the maximum length stretch of the mapping φ.

3.2 Bound on Max Load
Given a routing scheme Γ in Ω for the traffic pattern Π, by ap-

plying the map φ : Ω → Ω′ we get a routing algorithm Γ′, the
push-forward of the routing scheme Γ via φ in Ω′. Γ

′
allots the

path φ(γ) to the pair (a, b), where γ is the path joining φ−1(a) and
φ−1(b) as dictated by Γ. In particular, we can consider the traffic
load of the routing scheme Γ′ under traffic pattern Π′ = φ(Π).
In the following theorem we relate the maximum traffic load of Γ
(under traffic pattern Π) and the maximum load of Γ′ (under traffic
pattern Π′).

Theorem 3. Given a routing scheme Γ on Ω and φ : Ω→ Ω
′

area-
preserving, denote by Γ

′
the routing scheme on Ω

′
which allots the

path φ(γ) to the pair (a, b), where γ is the path joining φ−1(a) and
φ−1(b) as dictated by Γ. Then

1

d(p)
`Γ(p) ≤ `Γ′ (φ(p)) ≤ d(p)`Γ(p) ∀p ∈ Ω (2)

PROOF. Fix an ε > 0. By continuity of Jφ(x, y), ∃δ > 0 such
that for any p

′
in the disk of radius δ around p (denoted as Bδ(p)),

d(p
′
) < d(p) + ε, and

1

d(p′)
>

1

d(p)
− ε (3)

Let Bδ(p) ⊃ Bδ1(p) ⊃ Bδ2(p) ⊃ · · · be a sequence of nested
neighborhoods of p such that ∩∞i=1Bδi(p) = p. We will calcu-
late the load at φ(p) using the sequence φ(Bδi(p)). Note that
φ(Bδi(p)) has the same area as Bδi(p).

Pick n source destination pairs in Ω
′

by distribution Π′. Since
φ is measure preserving, this amounts to picking n pairs in Ω by
distribution Π and looking at their images under φ. Consider any

source destination path γ (joining two points a and b) intersecting
Bδi(p) in Ω. The fact that φ is a homeomorphism implies that φ(γ)

intersects the neighborhood φ(Bδi(p)) of φ(p) ∈ Ω
′
.

Now let γi = γ ∩ Bδi(p). As a consequence of Equation 3, the
length of φ(γi), denoted as |φ(γi)| satisfies(

1

d(p)
− ε
)
|γi| < |φ(γi)| < (d(p) + ε)|γi| (4)

as a consequence of which the load ofBδi(p) and φ(Bδi(p)) (both
of which have the same area) satisfy(

1

d(p)
− ε
)
`Γ(Bδi(p)) < `Γ′ (φ(Bδi(p))) < (d(p)+ε)`Γ(Bδi(p))

Taking limit as i→∞ gives(
1

d(p)
− ε
)
`Γ(p) ≤ `Γ′φ(p) ≤ (d(p) + ε)`Γ(p) ∀p ∈ Ω (5)

Since ε > 0 chosen above was arbitrary, this proves the theo-
rem. �

By applying the above theorem we can now study maximum load
of two algorithms in two domains of different shapes. We provide
two theorems doing so, and we omit their straightforward proofs.
First we study how the optimal load balanced algorithms in Ω and
Ω′ relate to each other. Recall that `Γ denotes the maximum load
under Γ.

Theorem 4. Let Γ∗ and Ψ∗ be the optimal load balanced routing
schemes on domains Ω and Ω

′
respectively. Let φ be an area-

preserving map from Ω to Ω
′

and define d(φΩ,Ω
′) as above. Then

1

d(φΩ,Ω
′)
`Γ∗ ≤ `Ψ∗ ≤ d(φΩ,Ω

′)`Γ∗ (6)

Remarks on Theorem 4: Here the statement holds for any area-
preserving homeomorphism between the two domains. Thus, we
can find the area preserving map φ : Ω → Ω′ that achieves the
minimum length stretch. Clearly the more similar Ω is to Ω′ the
smaller this length stretch could be.

Besides, the above statement gives non-trivial lower bounds for
the best achievable load on any given domain. This has not been ac-
complished before. It can be intuitively understood that any routing
algorithm on domains with narrow bridges/cuts necessarily creates
high traffic load at the bridge area – the shape matters. This theo-
rem makes it more precise. Take Ω′ as the unit disk. We know that
the minimum max load of any routing for uniform traffic pattern
has maximum load of at least 0.45 – the average load of a node
in the disk when one uses shortest path routing [21]. If the area-
preserving mapping φ has length distortion at most say δ, then we
know that the optimal load on the domain Ω is at least 0.45/δ.

The next theorem tells us how to obtain an approximate solu-
tion on the original domain Ω by using an approximate (or exact)
solution on the target domain Ω′.

Theorem 5. Let Ψc be a factor c approximation of the optimal so-
lution to the min max problem on Ω

′
, i.e. `Ψc ≤ c`Ψ∗ , where Ψ∗

is as in Theorem 4. Let Γ be the routing scheme on Ω that allots the
path φ−1(γ) to the source-destination pair (a, b) inside Ω, where γ
is the path between φ(a) and φ(b) as dictated by Ψc. Let Γ∗ be the
optimal routing scheme on Ω. Then `Γ ≤ cd2(φΩ,Ω

′)`Γ∗ .

3.3 Length stretch bound
It is clear that any other routing scheme on the domain Ω will

generate longer paths than shortest path routing. Now we will show
that by using area-preserving map φ, we also bound the path stretch
by a constant factor dependent on d(φ). Assume that Γ and Ψ are
shortest path routing schemes on Ω and Ω′ respectively, and let Ψc

be a routing scheme on the disk such that the path it generates be-
tween a source-destination pair (u, v) is at most c times the length
of the shortest path between u and v, for all pairs (u, v). We will
write this as

|RΨc(u, v)| ≤ c|RΨ(u, v)|

here RΨ(u, v) denotes the route between u and v under Ψ and |.|
denotes its length. Now let φ be an area-preserving map from Ω to
Ω′, and define d(φΩ,Ω′) as in Equation 1. Let Γ

′
be the pull-back

of Ψc via φ.

Theorem 6. Under the above hypothesis,

|RΓ
′ (a, b)| ≤ cd2(φΩ,Ω

′)|RΓ(a, b)| ∀a, b ∈ Ω (7)

PROOF. Let Ψ0 be the push-forward of Γ (the shortest path rout-
ing on Ω) via φ. From the proof of Theorem 3, one can see that the
image of a route R in Ω (denoted as φ(R)) has length at most
d(φΩ) times that of R. We now have the following string of in-
equalities:

|RΓ
′ (a, b)| ≤ d(φΩ)|RΨc(φ(a), φ(b))|

≤ cd(φΩ)|RΨ(φ(a), φ(b))|
≤ cd(φΩ)|RΓ∗(φ(a), φ(b))|
≤ cd2(φΩ)|RΓ(a, b)| (8)

where the second inequality follows by the hypothesis on Ψc, the
third by the fact that shortest path routing Ψ will have shorter lengths
than Γ∗ and the last inequality follows by the same observations as
the first (since Γ∗ is the image of Γ, the shortest path routing on
Ω). �

We will show in the simulation section that in all practical sce-
narios, the stretch is much smaller than the claimed constant in our
proof.

4. LOAD BALANCED SHORT PATH ROUT-
ING IN A DISK

In this section we study load balanced routing for a network in-
side a disk domain. We will first present the scaling laws of the
maximum load for shortest path routing, under uniform traffic pat-
tern, in a disk and on a sphere respectively.

4.1 Scaling Law in Disks, Spheres, Half Spheres
Suppose that we use uniform traffic pattern and deliver one mes-

sage between each pair of nodes in the network of n nodes. When
the network is uniformly distributed in a disk of radius R, the max-
imum traffic load by shortest path routing occurs in the center [21]
and is in the order of Θ(n

√
n) [13]. Notice that in fact the max-

imum traffic load is already asymptotically optimal. In particular,
on average the shortest path between all pairs of nodes has length in
the order of Θ(R) ≈

√
n. Thus the total traffic load on all nodes is

Θ(n2√n). By pigeon hole principle, the maximum traffic load in
the network is at least Θ(n

√
n). Therefore, shortest path routing in

a disk achieves path stretch of 1 and load balancing ratio of O(1).
For a network of n nodes uniformly deployed on a sphere of

radius R, the shortest path routing follows the geodediscs on the

sphere. Due to perfect symmetry the traffic load is perfectly uni-
form everywhere on the sphere. Similarly, the total traffic load on
all nodes is Θ(n2√n). Spreading the total traffic load on all nodes
uniformly, the traffic load for each node is Θ(n

√
n). Notice that

this is also the optimal load balanced routing algorithm.
For a network of n nodes uniformly deployed inside the bottom

half sphere of radius R, shortest path routing using spherical coor-
dinates gives a maximum traffic load of O(n

√
n) as well. To see

this, imagine 2n nodes uniformly spread inside a whole sphere and
issue a message between all pairs of these 2n nodes. By the analy-
sis above, the maximum traffic load is Θ(n

√
n). Now, remove all

the messages that involve any node in the top half sphere, the max-
imum traffic load does not increase and is thusO(n

√
n). The same

scaling upper bound applies for other fractional caps of a sphere.

4.2 Improving Load Balancing
The discussion above suggested that for a network with a regu-

lar shape, shortest path routing already achieves asymptotically the
best load balancing ratio. The improvement margin on reducing
maximum load lies in improving the constant factor. This partly
explains the limited improvement reported earlier by heuristic al-
gorithms [21]. We will summarize options for greedy routing using
virtual coordinates in the case of a disk. This will be used as sub-
routine for handling networks of general shape in the next section.

Using Lambert azimuthal projection To further reduce the center
traffic load, we can map a disk to a sphere by using area-preserving
maps and then adopt the spherical coordinates for greedy routing.
The intuition is to push paths away from the crowded center. In
particular, we use the Lambert azimuthal equal-area projection.
Denote the (open) disk of radius r centered at the origin in the
plane by Dr , and set D := D1. The Lambert azimuthal projection,
g : D2 → S2 \{(0, 0, 1)} is the area-preserving map from the disk
of radius 2 to the sphere of radius 1 (centered at the origin in R3)
minus its north pole given by:

g(x, y) =

(
x

√
1− x2 + y2

4
, y

√
1− x2 + y2

4
,
x2 + y2

2
− 1

)
(9)

One can see that g maps the disk of radius
√

2 to the lower hemi-
sphere, the circle of radius

√
2 to the equator, and the remainder of

the bigger disk with radius 2 to the upper hemisphere. Let SH
denote the lower half sphere, and Γ denote the greedy routing us-
ing spherical metric on it. For two nodes a, b ∈ D√2, we choose
the path g−1(Rg(a),g(b)), whereRg(a),g(b) is the shortest path be-
tween g(a) and g(b) on SH using Γ. Denote this routing scheme
on D√2 as Ψ. Furthermore, let ∆ denote shortest path routing on
the disk. We can show that Ψ has maximum load a factor 4

√
2

times smaller than the maximum load of ∆, and has path stretch at
most two.

Theorem 7. Let Ψ and ∆ be two routing schemes on the disk of
radius

√
2 as above. Then `Ψ = `∆/(4

√
2).

PROOF. First, we need to calculate the proportionality constant
in Theorem 1 in [21]. Redoing their integration, one finds that the
maximum load under ∆ is 4

√
2/π2.

Now we need to find the load on the south pole (of the unit lower
half sphere), under the shortest path routing on the spherical metric.
We set up an integral similar to the disk case, using a similar coor-
dinate change. Thus the load on a small disk of radius ε at the south
pole is found out to be I(ε)

πε2
, where I(ε) is the integral mentioned.

This integral does not have a closed-form expression.

We then use Taylor series to find out the load at the south pole as

`Ψ =
1

2π
.
∂2I

∂ε2
‖ε=0

which turns out to be 1/π2. Comparing with the load of 4
√

2/π2

gives us the desired constant. �

Theorem 8. For any source destination pair (a, b) inside D,

|RΨ(a, b)| ≤ 2|R∆(a, b)|.
PROOF. We first find out how much a curve on the disk gets

streched when mapped to the lower half sphere via the area-preserving
mapping. To do this, we write the Lambert’s azimuthal mapping in
term of polar coordinates (R,Θ) on the disk and cylindrical coor-
dinates (r, θ, z) on the sphere:

(r, θ, z) =

(
R

√
1− R2

4
,Θ,

R2

2
− 1

)
(10)

Given a curve (R(t),Θ(t)) on the disk we find its tangent vector
v by differentiating equation 10. Calculating the length of v and
normalizing (R(t),Θ(t)) by requiring Ṙ2 + R2Θ̇2 = 1, we max-
imize the length keeping in mind that R ranges from 0 to

√
2 and

Ṙ from 0 to 1.
This implies that any curve on the disk when translated to the

sphere gets stretched by a factor of at most
√

2. The same statement
applies if we interchange the roles of the disk and the sphere. Now
consider any two points a and b on the disk, with shortest path
γ(a, b) of length `(a, b). Now |g(γ)| ≤

√
2`(a, b) by the above

observation on the stretch, and the shortest path γ̃ on the lower half
sphere from a to b certainly has a length shorter than that of g(γ).
By the argument for the inverse of the mapping, the pull-back of γ̃
on the disk is again stretched by a factor at most

√
2, and this gives

us the combined factor of 2 claimed. �

Moreover, it is clear that just by scaling the original network to
radius R disk, one can arrange for the map to cover different parts
of the sphere. Thus we scale our disk to a radius close to 2 if we
want to push routes more towards the boundary and closer to

√
2

if we want them pushed lesser. The former is more aggressive in
reducing the center load. In our simulations we provide different
values of R for which we apply this map.
Curveball – using stereographic projection Curveball routing
uses the same intuition of mapping a disk to a sphere, except that
the projection used is the stereographic projection. Stereographic
projection preserves angles, not areas. We refer the reader to [21]
for details. Again, routing is done greedily using spherical metric
on these virtual coordinates. Curveball routing is a heuristic. It can
be shown that if the disk is mapped to the bottom halfsphere the
length stretch is a constant. But there is no proof on how much the
maximum load is reduced compared to that of shortest path routing.
Using approximate optimal An approximate optimal solution to
the load balancing problem on the disk was described in [21]. How-
ever, since optimal is complicated, one cannot hope to get closed
formula for the route from a source to a destination. We refer the
reader to Section 3.4 of [21] for details. In our implementation, we
weight each edge by its distance r to the center of the disk using
the formula 1.8r3 − 3.1r2 + 2.3. We compute the shortest path in
the weighted graph and compare the performance with our meth-
ods. Notice that this algorithm is not a greedy algorithm and is less
practical than the two algorithms above.

5. LOAD BALANCED SHORT PATH ROUT-
ING ON AN ARBITRARY DOMAIN

(i) (ii)

Figure 1. A cross sectional view of the sphere and a plane tan-
gent to it at south pole. (i) Area-preserving map: each point on the
sphere (except the north pole) is projected to the plane along a cir-
cular arc centered at the point of tangency between the sphere and
plane. (ii) Stereographic map: a point p on the plane is mapped to
the intersection of the line through p and the north pole with the
sphere.

a

b

Figure 2. An L-shape domain. The shortest path from the top
corner to the left corner will go through the nodes near the reflex
vertex. The maximum traffic load near the reflex vertex is about
Θ(n2).

5.1 Area-Preserving Map to Disk
For an arbitrary domain Ω we again use area-preserving maps.

This time we map Ω to a disk such that we can pull back our solu-
tion from the previous section. By applying our theory in Section 3
we obtain the following results immediately.

Theorem 9. For any simply connected domain Ω and an area pre-
serving map φ that maps Ω to a disk of the same area, we use Lam-
bert’s azimuthal mapping to map the disk to a half sphere and create
the virtual coordinates of all nodes in the network as the spherical
coordinates on the half sphere. Greedy routing using such spherical
virtual coordinates has path stretch of 4d2

φ and load balancing ratio
of d2

φ, where dφ is the maximum length stretch of φ.

We would like to use an example to demonstrate the potential
of this approach. Take a look at the L-shape domain with n nodes
uniformly spread inside. With a message between every pair of
nodes, the nodes near the reflex vertex of the domain have traffic
load of Θ(n2) by shortest path routing – there are quadratic many
nodes whose shortest paths ‘bend’ at the reflex vertex. See Fig-
ure 2. Using the algorithm to be presented below, we can find an
area preserving map that maps the L-shape domain to a disk with
constant length stretch. Thus we can reduce the maximum load to
be Θ(n

√
n), by only increasing the path stretch by a small con-

stant! In our simulation section (see Figure 7) we report the load
reduction and its scaling in network size.

In the following we will present an distributed algorithm to com-
pute an area preserving map.

5.2 Computing Area Preserving Maps
For some domains (e.g. the square) a closed form for an area-

preserving map to the disk is available. Generally, this is not always
possible and numerical methods are required. We will present dis-
tributed algorithms for computing such a map.

We start with a simply connected domain (with finite area) whose
boundary is a piece-wise smooth curve. For our purposes, we can

assume that the boundary is a polygon with k vertices. This is
reasonable because any smooth boundary can be approximated by
polygons. Note that k is often much smaller than the number of
sensors, n, inside the domain.

Let Ω denote the interior of such a polygonal region, with P as
the boundary polygon. Our goal is to map Ω to a disk D centered
at the origin (of area equal to that of Ω) in an area-preserving way.
Consider a real valued function f defined on Ω in such a way that
the level sets of f are simple closed curves that fill up Ω. We call
f the contour generating function. Given f , we will first define an
area-preserving mapping from Ω to the disk in terms of f . We will
then show how to obtain f for any given Ω in a simple manner.

To describe our bounds, we need to consider the Jacobian of our
mapping. Set u := R cos Θ and v := R sin Θ where R and Θ are
the same as in Equation 13, but now we use the conformal mapping
g and the contour function f described in the previous section. The
new equations for R and Θ now become:

R(x, y) = f̃(x, y) :=
√

Area (Int {f−1(f(x, y))})/π

Θ(x, y) =
1

f̃(x, y)

∫ x,y

g−1(f(x,y))

ds

(f̃2
x + f̃2

y)1/2
(11)

5.2.1 Area-Preserving map using the contour gener-
ating function

Assume that f has continuous first order partial derivatives ev-
erywhere except at O, and not both of the partials are zero at any
point. Let C be the family of contours of f , i.e. C is a set con-
taining all simple closed curves γ ⊂ Ω, such that there exists a
constant cγ with f(x, y) = cγ for all points (x, y) ∈ γ. LetO be a
point interior to all the curves in C, and let L be a path joiningO to
some point on P such that L intersects each curve in C once. See
examples of contoured regions in Figure 3(b) and Figure 3(c).

(a) An example of area-preserving map from a triangle
to a disk

(b) Contoured star-shaped
polygon using shrinking
boundary method

(c) Contoured pentagon using con-
formal mapping method

Figure 3. Example of area-preserving map and contoured polygons

The area-preserving mapping φ : Ω → D we use was first de-
scribed in [4]. It has the following properties:

1. Every curve γ ∈ C is mapped to a circle inside D centered
at the origin. Hence the contours are mapped to concentric
circles. See Figure 3(a) for an example.

2. The path L is mapped to any given radius of D.

To construct φ, we first modify our f as follows. Define a function
f̃ on Ω such that [f̃(x, y)]2 at any point (x, y) ∈ Ω equals 1/π
times the area inside the contour in C passing through (x, y), i.e.

f̃(x, y) =
√

Area(Int γ(x,y))/π, (12)

where γ(x,y) ∈ C is the contour passing through (x, y). Choose
polar coordinates (R,Θ) inD where Θ is measured from the given
radius to which we want to map L. The map φ : (x, y) → (R,Θ)
is now given by :

R(x, y) = f̃(x, y) , Θ(x, y) =
1

f̃(x, y)

∫ x,y

Y (x,y)

ds

(f̃2
x + f̃2

y)1/2
,

(13)
where Y (x, y) is the point of intersection of L with the curve in C
through (x, y), f̃x and f̃y are the partial derivatives, and the inte-
gral is evaluated along the curve of C from Y (x, y) to (x, y) in the
direction for which the interior is on the left.

For the proof that this map is indeed area-preserving, we refer the
reader to [4]. Observe that any contour γ passing through (x, y)

gets mapped to a circle of radius f̃(x, y) (see Figure 3(a) for an
example), and by the definition of f̃ , they have the same area. In
general, there are many area-preserving mappings from Ω to D;
we choose the above one1 because of its nice property of mapping
contours to circles. Furthermore, we will see later that by choosing
O to be the point with the maximum load, we can achieve good
results for load balancing.

Now we describe how to map Ω to D (the disk of area equal
to that of Ω) in a distributed manner. For ease of description we
assume first that D is a unit disk; the method described below can
easily be generalized for a larger disk. Recall that the nodes on the
same contour (the same value under f) will be mapped to the same
circle in D. Thus there are two steps for computing the map. First
we need to form the level set of f in a distributed way. Second we
will compute the virtual coordinate for each node under the area-
preserving map.

There has been previous work on finding contours, one of such
robust algorithms in a distributed setting is to use the cut locus [25,
27]. In fact, in this setting the level sets are simple – f has only
a single minimum inside Ω and no saddles. We discretize the in-
terval [0, 1] into 1/ε intervals of width ε each. Here ε depends
on the density of the nodes in the network and is in the order
of O(π/n). We now find one contour cycle γi for each interval
[iε, (i + 1)ε], 0 ≤ i ≤ n/π. The set of nodes whose values are
inside [iε, (i+ 1)ε], denoted as Ci, naturally occupies an annulus.
Note that we will choose ε according to the network density such
that Ci is connected. One node, denoted as the root of this contour,
ri floods within Ci. For the purpose of the computations later, we
will choose the roots ri for different levels along a path that maps
to a radius under the conformal map g. That is, the nodes whose
projection under g on the positive x-axis (or is the closest to the x-
axis among neighbors) will be chosen as the roots for the contours.
After the flooding from ri in Ci, the cut locus is defined as a pair
of neighboring nodes whose shortest paths to the root are different
and far apart. Then connecting the shortest path for the cut pair will
give us a closed cycle γi = {zij} representing the contour at the
range [iε, (i+1)ε]. The nodes within the band that are not selected
to be on the contour cycle will be rounded to the nearest node on
the contour cycle and will be handled later. Remark that the flood-
ing is only restricted to the nodes inside the annulus and flooding
1To the best of our knowledge, the map described in [4] has not
been used before for load-balancing purposes.

for different levels does not overlap. Thus the total communication
cost is linear in the number of nodes.

At the end of this procedure, we have a closed contour γi with a
root ri. Now we can circulate another message along γi to calculate
the area inside γi. Then ri forms

f̃i =
√

Area(γi)/π

and sends this value to all nodes in the contour γi. This gives the ra-
dius of the circle that γi is mapped to. In polar coordinates (R,Θ),
R for node zij lying on contour γi is just f̃i, i.e R(zij) = f̃i, ∀j.
Now we will find the angular coordinate for each node of γi by
computing a (discrete) integral along γi, which approximates the
integral in Equation 11.

First we need to calculate the partial derivatives. For every node
zij on the contour γi:

1. Locates neighbors x+
ij , x

−
ij , y

+
ij , and y+

ij , where x+
ij (y+

ij) is
the closest neighbor in the positive direction of the horizontal
(vertical) line passing through zij , x−ij (y−ij) is the closest
neighbor in the negative direction of the horizontal (vertical)
line passing through zij . Find their values under f̃ through
local communications.

2. Computes

vx(zij) =
f̃(x+

ij)− f̃(x−ij)

distance(x+
ij , x

−
ij)
, vy(zij) =

f̃(y+
ij)− f̃(y−ij)

distance(y+
ij , y

−
ij)

and vij = 1/(
√

(vx(zij))2 + (vy(zij))2).

For computing Θ(zij), we start from the root of the contour ri =
zi0, for which Θ(ri) = 0. Now we just discretize the integral in
Equation 11. Let Vi0 = 0. A node zij gets a value Vi(j−1) from
node zi(j−1). It then adds the quantity vij(distance(zij , zi(j−1)))
to this value and passes it as Vij to node zi(j+1). In other words,
the sum

Vij =

j∑
k=0

vij(distance(zij , zi(j−1)))

is updated by node zij . We finally define Θ(zij) = (Vij)/(f̃i). In
this way all the nodes on contours find their positions inside the disk
in polar coordinates. Setting u = R cos Θ and v = R sin Θ gets
them the cartesian coordinates. Denote this map as φ : (x, y) →
(u, v).

For nodes that are not on any contour in the above method, a
simple “interpolation” function can be used.

5.2.2 Finding the contour generating function
The previous section assumed the knowledge of f—the contour

generating function. In this section we describe how we generate
contours for an arbitrary domain.

For many shapes, the contours can be generated easily just by
shrinking the boundary by appropriate factors. For instance, con-
sider the case of star-shaped polygons P; one can find the center
of this polygon p (the point from which the entire polygon is “vis-
ible") and find the distance of every point x on the boundary to p.
Let Lpx denote the line segment between p and x and `px denote
its length. Define the ith contour γi by

γi = {qx ∈ Lpx : distance(qx, p) = εi`px;x ∈ P}

where the εi ∈ (0, 1) are constants. Figure 3(b) shows an exam-
ple of this. Note that the contours attained in this way are non-
differentiable, i.e. they will have corners.

We describe next one elegant and simple method to get a smooth
contour generating function for any domain Ω. Let g : Ω → D

be the conformal mapping from the polygon to the disk. Define
f : Ω → [0, 1] by f(x, y) = |g(x, y)| where |g(x, y)| denotes the
distance of g(x, y) from the origin. It is now clear that f−1(a) for
some a ∈ [0, 1] will be a simple closed curve γ inside Ω. Further-
more, the pre-image of the interval [0, 1] can be seen to be a curve
joining O to g−1(1) which intersects every contour only once. We
define L := g−1([0, 1]) and then use the mapping described in the
previous section. The second figure in Figure 3(c) illustrates this
method for a pentagon. As mentioned, the contours are smoothed
out. Care should be taken when deciding on which point inside the
polygon is to be mapped to the origin on the unit disk; essentially
the point should not be too close to the boundary of the polygon,
since then the contours would no longer be uniformly dense.

In a distributed setting, every node z wants to find its image in
the unit disk under the conformal mapping g(z). The map g de-
pends only on the polygon P - boundary of the domain Ω. Another
freedom in the Schwarz-Christoffel mapping is that we can choose
which node in Ω to be mapped to the origin of disk. For our pur-
poses, we feel it is reasonable to map the node with expected high
traffic load (e.g., the centroid of P) under the shortest path routing
scheme to the origin. This is because the method that we use to al-
leviate load in the disk assume the center to be overloaded and then
try to route away from it. However, this node should not be very
close to the boundary as stated earlier, for so the contours would
not be uniformly dense; if this happens, we choose an arbitrary
node closer to this node, but is farther from the boundary.

With all this information, a single node (e.g., the base station)
computes the parameters of the conformal mapping. Only the infor-
mation about the parameters in the Schwarz-Christoffel mapping g
is relayed to all nodes via flooding. Using the functional form of g,
the nodes individually compute their own pre-images and compose
with e−1 as above to find their coordinates in the disk. Once every
sensor node with original coordinate z has found g(z) (its image
under the conformal map to the disk), it calculates f(z) which is
just the distance of g(z) from the origin. f(z) is the contour gen-
erating function. In this method, the information relayed is only
O(k), where k � n is the number of vertices of the polygon and
is much smaller than n, the number of sensors in the domain. The
contour function for the shrinking method for star-shaped polygons
is just the distance of every node to the center of the star, which can
be computed by each node individually by routing to the center
node.

5.3 Analysis of the Algorithm
Computational Complexity and Memory Requirements The dis-
tributed algorithm provided above is very light-weight in terms of
both computational complexity and memory requirements. The
parameters of the Schwarz-Christoffel conformal mapping can be
computed to ε accuracy in O(k log 1

ε
) computations [3], where k

is the number of nodes on the boundary of the domain. Only one
node, the base station has to undergo this cost. All the other nodes
undergo a subsequent Θ(1) cost to compute the area-preserving
map. Routing on the spherical metric in virtual coordinates also
requires Θ(1) computations per node on the routing path.

The same holds for the memory requirements. The base station
has to store the Θ(k) coordinates of the vertices on the boundary.
After the conformal map is computed, all nodes require Θ(1) mem-
ory for storing quantities aiding in the computation of the area-
preserving map. Once the virtual corodinates on the disk (and
hence on the sphere) are obtained, a node only stores its virtual
coordinate and that of its neighbors.
Guaranteeing Delivery For an arbitrary domain, greedy routing
can get stuck at a local minima. However, because our coordinates

are either in the disk or on the sphere (both convex shapes), for
a dense network it is very unlikely that greedy routing gets stuck.
Moreover, if the density is not high enough and greedy routing does
get stuck, we can still ensure delivery by using the contours. The
node at which the packet is stuck can always use the “contour"
routes to route along its contour until it finds a node that can con-
tinue greedy routing. Although this might change the load function,
the effect would not be drastic as 1) Such instances would be rare
due to convexity of the target domain in which the virtual coordin-
ates lie and 2) The expected detour would be very small. In the
next section, we always compare our newly developed methods to
shortest path routing on the original domain Ω because greedy rout-
ing can get stuck, in which case packets are not delivered, and our
conclusions about the change in load function would be erroneous.

6. SIMULATIONS
We perform experiments2 on several networks in domains of dif-

ferent shapes, including the disk. In our disk model, we place about
1500 − 2000 nodes on a perturbed grid with an average degree of
7.3, and perform all-pairs shortest path to get the load for each
node. We not only consider the unit disk graph model but also the
more realistic quasi-unit disk graph model. For a dense network in
an arbitrary simply connected domain, we first generate contours
and then using the algorithm mentioned before to map the domain
to the disk in an area-preserving way.

We use different routing schemes on the disk - using the Lam-
bert’s azimuthal mapping (and then routing greedily on the spher-
ical coordinates), Curveball Routing [21], the optimal approxima-
tion [21] and shortest path routing. For a domain of arbitrary shape,
we give it virtual coordinates in the disk using the area-preserving
mapping and then implement all the aforementioned routing schemes.
We then compare them with the shortest path routing on the original
domain and also with each other. We can summarize our observa-
tions as follows:

1. For a domain of arbitrary shape (except the disk), using al-
most any of the above routing schemes on the disk after ap-
plying the area-preserving map gives considerably better re-
sults than shortest path routing on the original domain. This
improvement occurs for a variety of domains (different shapes).

2. For the disk the optimum approximation (presented in [21])
gives very high load at the boundary - a problem which is re-
solved by both our application of the Lambert’s azimuthal
mapping and Curveball Routing. The azimuthal mapping
technique gives results very similar to those of Curveball.
The maximum stretch of the Lambert’s azimuthal mapping
is less than 1.9 (note that Theorem 8 gave a theoretical upper
bound of 4).

3. The above statements also hold for a quasi-unit disk graph
with reasonable degree variance and link asymmetry. Thus
our method is still very effective when all nodes do not nec-
essarily have the same radius of communication, and when
links are asymmetric.

4. When we decrease the average degree, the difference be-
tween our method and shortest path routing begins to dimin-
ish, and at average degree around 5 they are very similar.
This is because in this case, there are not many paths apart
from the shortest one, and our algorithm is forced to use it
most of the time.

2All our experiments were performed on theC# Simulator, and for
the conformal mapping we use the Schwarz-Christoffel toolbox [1]
developed for MATLAB [17]

We provide an example of the area-preserving mapping from a
pentagon with 238 nodes and average degree 7.24 to the disk in
Figure 4(a). After getting coordinates on the disk, the compari-
son of various routing schemes on virtual and original coordinates
(in the pentagon) is provided in Figure 4(b). The maximum load
of shortest path routing decreased by about 19% when we use the
area-preserving map to the disk and Curveball routing thereafter,
and by similar percentages for area-preserving map followed by
the azimuthal mapping. Note that this improvement comes only
at the cost of maximum 4% increase in the average load (which is
minimized by shortest path routing for obvious reasons). The opti-
mum approximation in [21] still suffers from abnormally high load
at the boundary, but performs similarly otherwise.

Fig. 5 presents the other result of the load balancing performance
on a cross shape domain. With Lambert’s mapping, the maximum
load of the domain is reduced by 18%; while Curveball and opti-
mum approximation achieve even better, up to 30%. This clearly
shows that area-preserving mapping to a unit disk drastically re-
duced the load. Note that for “fat” and convex domains, the reduc-
tion in load was even more prominent, which is to be expected. We
achieve similar figures for many complicated shapes (like the star);
for simplicity we just presented a generic case of the cross shaped
domain.

We also test the routing stretch in all domains. The maximum
routing stretch factor was 1.96, which we believe is reasonable,
considering the reduction in load.

The comparison of different routing schemes on the unit-disk
graph with about 1500 nodes on a perturbed grid is provided in Fig-
ure 6, which corroborates observation (2) above. As mentioned,
the above results were stable—for domains with different shapes
and for the quasi-unit disk graph models we achieved similar per-
formances.

7. CONCLUSION
A clear open problem is to consider non-simple domains, i.e.,

domains with holes. Previous work mainly focused on how to al-
leviate the heavy traffic along hole boundaries. We remark that
bounded load balancing would become much more challenging as
one has to also consider paths of different homotopy types (getting
around holes in different ways). In particular, an extreme case of
the problem on a multi-connected domain could be load balanced
routing on a planar graph, which is known to be NP-hard. New
ideas are needed to solve that case and this remains one of the most
interesting future directions.

8. REFERENCES
[1] Schwarz-Christoffel toolbox for MATLAB.

http://www.math.udel.edu/~driscoll/SC/.
[2] M. Andrews and L. Zhang. Hardness of the undirected congestion

minimization problem. SIAM Journal on Computing, 37(1):112–131,
2007.

[3] C. Bishop. Conformal mapping in linear time. Discrete and Comput.
Geometry, 44(2):330–428, 2010.

[4] A. B. Brown and M. Halperin. On certain area-preserving maps.
Annals of Mathematics, 36(4):833–837, Oct. 1935.

[5] J. Bruck, J. Gao, and A. Jiang. MAP: Medial axis based geometric
routing in sensor networks. Wireless Networks, 13(6):835–853, 2007.

[6] C. Chekuri, S. Khanna, and F. B. Shepherd. An
o(
√
n)-approximation for EDP in undirected graphs and directed

acyclic graphs. Theory of Computing, 2:137–146, 2006.
[7] J. Chuzhoy and S. Khanna. New hardness results for undirected

edge-disjoint paths. Manuscript, 2005.
[8] Q. Fang, J. Gao, and L. Guibas. Locating and bypassing routing

holes in sensor networks. In Mobile Networks and Applications,
volume 11, pages 187–200, 2006.

(a) A pentagon with grid nodes and area-preserving
map to disk using contours by conformal mapping
method (238 nodes, avg degree 7.24)

AP + Lambert's (Avg: 3539.28)

AP + Curveball (Avg: 3526.64)

AP + Optimum approx. (Avg: 3605.34)

Shortest Path (Avg: 3441.5)

L
o

a
d

 C
o

u
n

t

0

20

40

60

80

Node Load

500
1000

1500
2000

2500
3000

3500
4000

4500
5000

5500
6000

6500
7000

7500
8000

8500

5

10

6000
6500

7000
7500

8000
8500

(b) A comparison of the routing schemes. Note the decrease in
maximum load on using area-preserving map followed by either az-
imuthal or stereographic mapping to sphere compared to shortest
path routing

Figure 4. Load-balanced routing on a pentagon.

[9] J. Gao and L. Zhang. Load balanced short path routing in wireless
networks. IEEE Transactions on Parallel and Distributed Systems,
Special Issue on Localized Communications, 17(4):377–388, April
2006.

[10] J. Gao and L. Zhang. Tradeoffs between stretch factor and load
balancing ratio in routing on growth restricted graphs. IEEE
Transactions on Parallel and Distributed Computing, 20(2):171–179,
February 2009.

[11] E. Hyytiä and J. Virtamo. On load balancing in a dense wireless
multihop network. In 2nd conference on Next Generation Design and
Engineering (NGI), pp. 72-79, Valencia,Spain, 2006.

[12] E. Hyytiä and J. Virtamo. Near optimal load balancing in dense
wireless multi-jop networks. In 4th conference on Next Generation
Design and Engineering (NGI). pp. 181-188, Karakow, Poland, 2008.

[13] E. A. Jonckheere, M. Lou, F. Bonahon, and Y. Baryshnikov.
Euclidean versus hyperbolic congestion in idealized versus
experimental networks. Internet Mathematics, 7(1):1–27, 2011.

[14] B. Karp and H. Kung. GPSR: Greedy perimeter stateless routing for
wireless networks. In Proc. of the ACM/IEEE International
Conference on Mobile Computing and Networking (MobiCom),
pages 243–254, 2000.

[15] R. M. Karp. Reducibility Among Combinatorial Problems. In R. E.
Miller and J. W. Thatcher, editors, Complexity of Computer
Computations, pages 85–103. Plenum Press, 1972.

[16] J. Li and P. Mohapatra. Analytical modeling and mitigation
techniques for the energy hole problem in sensor networks. Pervasive
and Mobile Computing, 3(3):233–254, 2007.

[17] MATLAB. version 7.10.0 (r2010a). The MathWorks Inc.,Natick,
Massachusetts, 2010.

[18] A. Mei and J. Stefa. Routing in outer space: fair traffic load in
multi-hop wireless networks. In MobiHoc ’08: Proceedings of the
9th ACM international symposium on Mobile ad hoc networking and
computing, pages 23–32, New York, NY, USA, 2008. ACM.

[19] C. H. Papadimitriou and D. Ratajczak. On a conjecture related to

(a) Cross-shaped domain with 1302 perturbed grid nodes, avg. degree
7.38

AP + Lambert's

AP + Curveball

AP + Shortest Path

AP + Optimum approx.

L
o
a
d
 C

o
u
n
t

0

50

100

150

200

250

300

350

400

450

Node Load

0 14000
28000

42000
56000

70000
84000

98000
112000

126000

140000

154000

168000

182000

196000

0

10

98
00
0

11
20
00

12
60
00

14
00
00

15
40
00

16
80
00

18
20
00

19
60
00

(b) The histogram comparison of load distribution over the cross-
shaped domain. We first map the cross shape domain to the unit
disk, then compare load balancing algorithm on the disk. Notice that
all unit disk load balancing routing algorithms now perform better
than shortest path routing over cross shape domain.

Figure 5. Load-balanced routing on a cross-shape domain.

Lambert's

Shortest Path

Optimum Approx.

CurveBall

A
v
e

ra
g

e
 L

o
a

d
 C

o
u

n
t

0

1000

2000

3000

4000

5000

6000

Distance From Center (%)

00 10 20 30 40 50 60 70 80 90 100

(a) Histogram of the average load for a unit disk network, as
a function of distance from the center.

Lambert's

Shortest Path

Optimum Approx.

CurveBall

M
a

x
 L

o
a

d
 C

o
u

n
t

0

50

100

150×103

Distance From Center (%)

00 10 20 30 40 50 60 70 80 90 100

(b) Histogram of the maximum load for a unit disk network.

Figure 6. Histogram of load distribution for a unit disk network

Shortest Path

Lambert R=1.4

Number of Nodes
1.5

Number of Nodes
2

L
o

g
a

ri
th

m
 o

f
M

a
x
im

u
m

 L
o

a
d

10
3

10
4

10
5

Number of Nodes

50 100 150 200 250 300 350 400 450 500 550 600

Figure 7. We tested the L-shape network for different network size.
In particular we try shortest path routing on the original network as
well as the Lambert based greedy routing approach. We calculate
the highest traffic load by both routing algorithm. By our analysis,
the first scales in the order of O(n2) and the second scales in the
order ofO(n

√
n). The figure shows the logarithm of the maximum

load respectively. It is clear to see that the curve for shortest path
routing has a bigger slope.

geometric routing. Theor. Comput. Sci., 344(1):3–14, 2005.
[20] P. P. Pham and S. Perreau. Performance analysis of reactive shortest

path and multipath routing mechanism with load balance. In
INFOCOM 2003. Twenty-Second Annual Joint Conference of the
IEEE Computer and Communications Societies. IEEE, Vol. 1 (2003),
pp. 251-259 vol.1, 2003.

[21] L. Popa, A. Rostamizadeh, R. Karp, C. Papadimitriou, and I. Stoica.
Balancing traffic load in wireless networks with curveball routing. In
MobiHoc ’07: Proceedings of the 8th ACM international symposium
on Mobile ad hoc networking and computing, pages 170–179, New
York, NY, USA, 2007. ACM.

[22] P. Raghavan. Probabilistic construction of deterministic algorithms:
approximating packing integer programs. J. Comp. and System
Sciences, pages 130–143, 1988.

[23] P. Raghavan and C. D. Thompson. Provably good routing in graphs:
regular arrays. In Proceedings of the 17th annual ACM Symposium
on Theory of Computing, pages 79–87, 1985.

[24] R. Sarkar, W. Zeng, J. Gao, and X. D. Gu. Covering space for
in-network sensor data storage. In Proc. of the 9th International
Symposium on Information Processing in Sensor Networks
(IPSN’10), pages 232–243, April 2010.

[25] Y. Wang, J. Gao, and J. S. B. Mitchell. Boundary recognition in
sensor networks by topological methods. In Proc. of the ACM/IEEE
International Conference on Mobile Computing and Networking
(MobiCom), pages 122–133, September 2006.

[26] X. Yu, X. Ban, R. Sarkar, W. Zeng, X. D. Gu, and J. Gao. Spherical
representation and polyhedron routing for load balancing in wireless
sensor networks. In Proc. of 30th Annual IEEE Conference on
Computer Communications (INFOCOM’11), pages 612–615, April
2011.

[27] X. Zhu, R. Sarkar, J. Gao, and J. S. B. Mitchell. Light-weight contour
tracking in wireless sensor networks. In Proceedings of the 27th
Annual IEEE Conference on Computer Communications
(INFOCOM’08), pages 960–967, May 2008.

