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Abstract—Random walk on a graph is a Markov chain and
thus is ‘memoryless’ as the next node to visit depends only on the
current node and not on the sequence of events that preceded it.
With these properties, random walk and its many variations have
been used in network routing to ‘randomize’ the traffic pattern
and hide the location of the data sources. In this paper we show
a myth in common understanding of the memoryless property of
a random walk applied for protecting source location privacy in
a wireless sensor network. In particular, if one monitors only the
network boundary and records the first boundary node hit by
a random walk, this distribution can be related to the location
of the source node. For the scenario of a single data source, a
very simple algorithm which says the simple integration along
the network boundary would reveal the location of the source.
We also develop a generic algorithm to reconstruct the source
locations for various sources that have simple descriptions (e.g.,
k source locations, sources on a line segment, sources in a disk).
This represents a new type of traffic analysis attack for invading
sensor data location privacy and essentially re-opens the problem
for further examination.

I. INTRODUCTION

Given a graph and a starting vertex, we choose a neighbor
of the current node at random and move to this neighbor and
continue in this fashion. This sequence of nodes is called a
random walk on the graph. Random walk is a Markov chain
such that the next node to visit only depends on the current
node and is independent of the history. This is often termed as
the “memoryless” property of a random walk, which makes
it useful for many applications in computer networking. Of
particular interest to this paper is the application of random
walk in wireless sensor network routing for preserving source
location privacy.

Source Location Privacy. Wireless sensor networks find many
useful civilian and military applications. In many settings one
would like to protect the privacy of sensor data, defined in the
general sense that sensor data and its contextual information
are observable by only those who are supposed to observe
it [10]. Providing privacy in wireless sensor network is chal-
lenging for a number of reasons. Besides that the sensor nodes
are low cost devices with limited computation and storage
capacities, the fact that the sensor nodes use wireless medium
make it susceptible to attacks such as eavesdropping and traffic
analysis. In the literature, privacy threats in sensor networks
are classified as content-oriented privacy threats (i.e., the leak-
ing of packet content to adversaries), that can be addressed by
security and encryption mechanisms, and contextual privacy
issues (i.e., the leaking of context information related to the

measurement and transmission of the sensor data), of which
location of the data source is a major piece of information
to be protected. In particular, an adversary may be able to
compromise private information of source locations without
the ability of decrypting the transmitted data – by simply
monitoring and analyzing the traffic pattern in the air.

A classical model formed for protecting the source location
privacy is the “Panda Hunter Game” [10]. In the game, a
large number of panda detecting sensors are placed in a
habitat to detect panda presence. Pandas here are analogs of
generic assets to be monitored by a sensor network. When
a panda is observed, the nearby sensor node will report
such detection data periodically to the sink through multi-hop
routing methods. The data package could be encrypted such
that the adversary cannot decipher the content of the message
and cannot derive the location of panda right away. However,
an adversary, in this case, the hunter, can monitor the traffic
in the network and by timing analysis trace back the routing
path to the origin of the message, i.e., the location of the
data source. Clearly, simple routing schemes such as shortest
path routing cannot provide data source privacy against traffic
analysis attacks.

Many schemes proposed in the literature for preserving
source location privacy use a common idea of introducing ran-
domness in packet routing. The objective is to make the traffic
pattern look random and uncertain, and then counteract the
adversarial traffic analysis attacks. Many of them use random
walk or variations of random walks as a major component
in the design. Phantom routing [10], for example, first uses
random walk in the network until the node is reasonably far
from the source node and then uses (probabilistic) flooding
method to deliver it to the source. Although a short random
walk may still have the current node correlated with the
origin, a long random walk will stop at a location that is
independent of the packet original. It is known that if the
random walk is longer than the mixing time, the random
walk converges to its limiting distribution called the stationary
distribution [15]. This it is equivalent to selecting a node in the
network randomly (from the stationary distribution) and thus
packet analysis afterwards will only trace back to this random
location, unrelated to the true data source.

Traffic Analysis on Random Walk. In this paper we show
that it is a myth in common understanding that random walk
automatically brings with it source location privacy. In other



words, we present a technique which allows certain traffic
analysis to infer the source location even for random walks
that are as long as they want. Therefore our message is that
random walk should be used carefully in protecting source
location privacy.

II. OVERVIEW

Network Model and Attack Model: We assume in this paper
a wireless sensor network deployed in a planar domain R of
interest for monitoring interesting events. The event locations
are of great importance for both the network owners and the
adversary. When an event is detected, the nearby sensor node
becomes the data source and sends the report periodically to a
data sink (e.g., a base station or a mobile sink) in the network.
We assume that the message is delivered by using random
walk, in which the next node to visit is uniformly chosen
from all neighbors of the current node. The random walk is
sufficiently long to ensure that the message will be delivered to
the data sink with high probability. A data source will generate
data packets periodically and the delivery of these packets is
completely independent of each other. That is, they follow
different random walk paths. The specific capabilities of the
adversary is summarized below.

• Monitoring traffic on network boundary. We assume that
the adversary can only monitor network traffic along the
network outer boundary. This is a reasonable assump-
tion in many settings when the domain of interest has
restricted access to anyone but the network owner. It is
also a realistic model of many military applications. The
adversary places monitoring stations to monitor network
traffic along the network outer boundary. Each monitoring
station listens to the traffic in the neighborhood of a
sensor node and record the signals delivered to/from the
sensor node. We assume that the positions of the mon-
itoring stations, or equivalently the network boundary,
are known. The monitoring stations are also assumed
to be perfectly synchronized. The traffic data from the
monitoring stations is collected and delivered to an offline
base station for further analysis. We remark that the
assumption puts more restriction to the adversary’s power
than the Panda Hunter model, in which the adversary can
be anywhere inside the network and can move around as
fast as possible.

• Packets are encrypted. We assume that the packets in
the network are encrypted using symmetric encryption
between the data source and the data sink and that the
adversary does not have the key to decipher the content
of the message. Similar to the Panda Hunter problem, the
data source issues data packets periodically. We assume
that the content of these data messages are different, i.e.,
with different time stamps. The monitoring stations can
compare the messages received by different boundary
nodes and conclude whether two messages received by
two boundary nodes are the same or not. We assume that
the chained encryption scheme used in onion routing is
not feasible for sensor network, for two reasons. First

the chained encryption requires that the source knows
the entire path taken by the message, which is not the
case for random walk. Second, chained encryption and
decryption for each relay node is too heavy for resource
constrained sensor nodes.

• Non-malicious. The adversary does not interfere with the
normal functioning of the sensor networks. Otherwise
it will be detected by intrusion detection schemes. The
adversary does not compromise any node and does not
generate or alter traffic in the network.

• Informed. We use the standard philosophy in security [22]
that the adversary is aware of the routing methods used
by the system, in our case, the random walk scheme.

• Centralized and powerful. The monitoring stations gather
traffic received from the network boundary and then
deliver all the data to an offline central station for process-
ing. We assume the adversary has abundant computing
resources and can perform complicated analysis.

Traffic Analysis of Random Walk: We first consider a special
case when the network is in a domain of disk shape and sensors
are uniformly distributed inside the disk. In this case the ran-
dom walk can be considered as a discrete approximation of the
continuous Brownian motion inside a disk. For each message
issued by the data source, through comparing the messages
gathered by the monitoring stations at the network boundary
we can conclude the node on the boundary that received the
message for the first time. Now, since the data source generates
multiple data packets, we monitor the position of the first hit
on the boundary by different data packets. This constitutes a
‘first hit’ distribution (also called the exit distribution) ω′

x on
the boundary where x is the source location. If the data source
is at the center o of the disk, by symmetry the distribution ω′

x

is a uniform distribution. When the data source is not at the
center of the disk, the distribution has a single peak at the
boundary intersected by the ray ox, and the closer the source
to the boundary, the higher the peak is. See Figure 1 for an
example. Therefore by monitoring the traffic pattern on the
network boundary only, we obtain an observation of the first
hit distribution px, through examining which we can infer the
source location.
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Fig. 1. The first hit distribution ω′
x and ω′

o for random walk inside a unit
disk starting at x and o respectively.

In general the network may not be of a disk shape thus
the first hit distribution could have a complicated correlation
with the source location. For a bounded domain R in the
plane, the probability that a Brownian motion started inside
a point z ∈ R hits a portion of the boundary is termed the
harmonic measure [9] ωz . The first hit distribution observed
from the traffic pattern ω′

z is a Monte Carlo approximation



of ωz . On simply connected planar domains, there is a close
connection between harmonic measure and the theory of
conformal maps. A conformal map is a continuous one-to-one
map that preserves angles. It is known that Brownian motions
are conformally invariant [11]. What this means is that under
a conformal map, f : R → R′, the probability for a Brownian
motion starting from x ∈ R and exiting from an interval
I[a, b] on the boundary ∂R is the same as the probability of
a Brownian motion starting from f(x) ∈ R′ and exiting from
an interval I[f(a), f(b)] on the boundary ∂R′. See Figure 2
for an example. Now, since any simple planar domain can be
mapped to a canonical shape of a unit disk by a conformal
mapping, one can obtain the harmonic measure for any simply
connected domain. In particular, take the example in Figure 1,
we can apply a Mobius transformation f from a disk to a disk
such that the point x is now mapped to the center of the disk.
Therefore the distribution ωx can be immediately computed
through f .
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Fig. 2. The probability for a Brownian motion starting from x ∈ R and exiting
from an interval I[a, b] on the boundary ∂R is the same as the probability
of a Brownian motion starting from f(x) ∈ R′ and exiting from an interval
I[f(a), f(b)] on the boundary ∂R′.

The discussion above suggests that the exit distribution
observed by the adversary along the sensor network boundary
can be used to infer the source locations. In this paper
we present such traffic analysis algorithms. We present two
algorithms specifically. The first one is for recovery of a single
data source. It is very simple, by integrating the position
and the harmonic measure along the domain boundary, i.e.,∫
z∈∂R zdωx(z). To understand this, take a look at Figure 1.

If the source is at o and we integrate the position by the
harmonic measure ωo (which is uniform) along the unit circle,
by symmetry this integration gives us the center of the disk.
If the source is at x, the integration of the position by ωx

must lie on the line segment oy – again by axial symmetry
of ωx with respect to oy. In fact, this integration would give
precisely the position of x. And this is true not only for the
case of a unit disk but for any planar domain. Since the first
hit distribution observed from the traffic pattern, ω′

x, would
be a good approximation to the harmonic measure ωx. By
using

∫
z∈∂R zdω′

x(z) we will get a very close approximation
to x, as long as we have enough samples to be statistically
meaningful.

The second algorithm is a general method using maximum
likelihood estimation and it can be used for a general case
when the data sources can be represented using low complex-
ity. A number of representative scenarios include multiple data
sources, data sources uniformly distributed on a line segment,
as in the case of target tracking applications, or data sources
uniformly inside a small disk or square, as in the case when

an event triggers multiple sensors to report to the sink. The
results and the algorithms can be extended to a non-simple
planar domain as well as a general non-planar terrain.

We presented an extensive list of simulations for different
network shape and different data source models as mentioned
above. In particular, we presented the tradeoff between the
number of messages issued by the data source vs the accuracy
of our prediction of the source location.

Last we want to remark that we do not mean to claim
that previous source location privacy preserving schemes using
random walks are inadequate, but rather raise an alarm that
their effectiveness should be reconsidered carefully given the
potential attack illustrated in this paper. At the end of the paper
we discuss variations of basic random walks and suggest ideas
to defeat this particular traffic analysis attack.

III. THEORY

In this section we first summarize the main results from the
elegant theory of Brownian motions and conformal maps. We
then provide the background on random walks in the discrete
setting, and state our results.
Conformal Maps:

Let C = {z : z = x + iy; x, y ∈ R} denote the complex
plane. The following material can be found in [1], [6].

Definition 3.1. A holomorphic function f on a domain D ⊂ C
is a complex valued function defined on D such that the
complex derivative of f exists everywhere inside D. This also
implies that f is infinitely differentiable, equal to its own Taylor
series and preserves angles at all points where the derivative of
f is non-zero.

A holomorphic function which has a non-zero derivative
everywhere is also called conformal.

Definition 3.2. A harmonic function f on a domain D ⊂ R2

is a twice continuously differentiable real valued function such
that ∂2f

∂x2 + ∂2f
∂y2 = 0.

Here are two useful properties:
• Let f(z) = f1(z) + if2(z) be holomorphic. Then f1 and

f2 are harmonic.
• Mean Value Property Let u be holomorphic/harmonic on

the unit disk D. Then, u(0) =
∫
∂D u(eiθ) dθ2π .

Mobius transforms and Riemann mapping:
Let D denote the unit disk centered at the origin in C. The

group of Möbius transformations is the set of all conformal
maps from D to itself. It is well-known that any such map is
of the form f(z) = eiθ z−z0

1−z̄0z
for some θ ∈ (0, 2π) and some

z0 ∈ D.
Let Ω be a simply connected domain (a topological disk)

in the plane, such that the boundary ∂Ω is a smooth curve:

Theorem 3.3 (Riemann Mapping). Let Ω be as above. Then
there exists a conformal map f : D −→ Ω. Further, f is unique
upto composition by a Möbius transformation.

Harmonic Measure:



Definition 3.4 (Harmonic Measure). [2] [7] For any subset
X of the boundary (X ⊂ ∂Ω), the harmonic measure of X with
respect to z is defined as ω(X,Ω, z) = 1

2π |f
−1(X)|.

Here |.| denotes the Euclidean length of an arc on the unit
circle. Note that any two conformal maps sending O to z
only differ by a rotation, so this definition does not depend
on the f chosen. Using harmonic measure, one can extend the
Mean-value property to arbitrary domains. If u is a harmonic
function on an arbitrary simply connected domain Ω, z0 ∈ Ω is
a base point and fz0 is a conformal map such that f(0) = z0,
then u ◦ f is harmonic on the disk, so that

u(z0) = (u ◦ f)(0) =
∫
S1

u(f(eiθ))
dθ

2π
=

∫
∂Ω

u(z)dωz0 (1)

where dωz0 is the harmonic measure with respect to z0.
The harmonic measure ω(X,Ω, z) is related to a Brownian

Motion started in the domain Ω frm the point z. We define
Brownian Motion next.
Brownian Motion:

Definition 3.5. A one-dimensional Brownian Motion [12] Wt

intuitively is a scaling limit of the random walk. In other words,
it is a stochastic process indexed by time t > 0, which has the
following properties :

1) W0 = x; here x ∈ R is the starting point.
2) The process has independent increments, i.e. for any two

disjoint intervals [s1, t1] and [s2, t2], where si, ti > 0,
the increment in one interval Wt1 −Ws1 is independent
of the increment in the other Wt2 −Ws2 .

3) Wt+h − Wt is Normally distributed with mean 0 and
variance h.

4) Almost surely, the function t −→ Wt is continuous.

The case W0 = 0 is called Standard Brownian Motion. A
two-dimensional Brownian motion is a pair Bt = (W 1

t ,W
2
t )

of two independent one-dimensional Brownian Motions.
Harmonic Measure, Brownian Motion and Conformal
Invariance:

An important property of the Brownian motion is that it
is invariant under conformal changes, i.e. the image of a
Brownian motion under a conformal map is again a Brownian
motion in the image of the domain [12]. The Brownian Motion
can be viewed as the limit, as t −→ 0 , of a walk which starts
at 0, chooses a direction randomly, goes a distance t in that
direction, and continues this way at every point. The angle
changes are preserved under conformal maps, therefore one
should expect that the law of the trajectory should be invariant.

Clearly, the same is true for harmonic measure. In other
words, ω(X,Ω, z) = ω(f(X), f(Ω), f(z)) for any X ⊂ ∂Ω
and f conformal.
Discrete Theory:

In this section, we summarize the related theories of random
walks on graphs.

Suppose G is a planar graph, embedded on the plane. Let
V = {v1, v2, · · · , vn} be the vertex set, (xk, yk) be the 2D
position of vertex vk, E = {e1, e2, · · · , em} be the edge

set. For simplicity, we assume each face of G is a triangle.
The following edge weight definition is motivated by the
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Fig. 3. (a) shows the edge weight. (b) shows that the vertex position function
is harmonic.

relationship of random walk and resistance of the triangulation
as in an electrical network [3] [5].

Definition 3.6 (Cotangent Edge Weight). [3], [5] Suppose
edge [vi, vj ] is adjacent to two faces [vi, vj , vk] and [vj , vi, vl],
then the weight on edge is given by wij =

1
2 (cot θk + cot θl).

The edge weight determines the transition probability for a
random walk on graph.

Definition 3.7 (Random Walk on Graph). Suppose X(t) is
a random walk on the graph G defined as follows: if at time t
the walk is at vertex vi, then the probability of vj being the next
vertex is given by: Prob{X(t+1) = vj |X(t) = vi} =

wij∑
k wik

.

When we choose a uniform sampling and all the triangles
are equilateral triangles, all the edge weights are close to 1.
In this case the above definition becomes the same as the
random walk with uniform distribution on all neighbors. In
our simulations we choose G to be a Delaunay triangulation
on a nice set of samples inside R.

Definition 3.8 (Discrete Harmonic Measure). Suppose G is
a planar graph with triangular faces. If the random walk X(t)
starts from a vertex vi and exits at vk ∈ ∂G, then the discrete
harmonic measure is defined as the probability ωk(vi) :=
Prob{X ∼ vk|X(0) = vi}.

Here X ∼ p means that the random walk X exits the boundary
∂G via the point p.

Definition 3.9 (Discrete Laplace Operator). Let f : V →
R be a function defined on the vertices of the graph G. The dis-
crete Laplace operator is defined as ∆f(vi) =

∑
j wij(f(vj)−

f(vi)).

Definition 3.10 (Discrete Harmonic Function). Let
f : V → R be a function and ∆ be the discrete Laplace
operator. If ∆f equals to zero for all vertices, then f is called a
discrete harmonic function.

From definition, it is easy to show that discrete harmonic
measures ωj : V → R, ∀vj ∈ ∂G are harmonic functions.
By definition, expected position function is harmonic. Figure
3 shows the vertex position function is also harmonic. Like
smooth case, discrete harmonic functions have mean-value
property, which states the value at each vertex is the average of



the values in the neighborhood. Mean-value property implies
maximal value principle, which says the max and min value
of a harmonic function must be on the boundary of the graph.

Definition 3.11 (Discrete Dirichlet Problem). Suppose f :
V → R is a function defined on the graph, f is harmonic, and
with boundary condition f |∂G = g,{

∆f(vi) = 0 ∀vi ̸∈ ∂G
f(vj) = g(vj) ∀vj ∈ ∂G.

(2)

Then from the maximum modulus principle, we can get the
uniqueness of the solution to the discrete Dirichlet problem.
The solution to the Dirichlet problem can be explicitly given
using harmonic measure.

Theorem 3.12 (Harmonic Measure Boundary Integration).
Suppose f : V → R is the solution to the Dirichlet problem
(Eqn.(2)). Then f(vi) =

∑
vj∈∂G g(vj)ωj(vi).

Suppose a vertex v0 at (x0, y0) sends messages routed
by random walks. Figure 3 (b) shows the position func-
tion is harmonic. According to theorem 3.12, (x0, y0) =∑

vk∈∂G(xk, yk)ωk(v0).. This is a linear running time algo-
rithm, given the harmonic measure ωk(v0) = Prob{X ∼
vk|X(0) = v0}. In our applications, we estimate the harmonic
measure simply by the ratio between the number of messages
received at vk and the total number of messages.

The above definitions and theorems do not require the
graph to be planar. In fact, these concepts can be defined on
triangular meshes in R3. But the 3D vertex position is not
harmonic. Similar to smooth case, one can apply conformal
mapping [19] [8] to flatten the 3D triangulation and use
the same method to estimate the source position on the 2D
image. Because the Laplace matrix is solely determined by the
connectivity of the graph and the corner angles, roughly speak-
ing, discrete conformal mapping preserve angles, therefore
conformal mapping preserves harmonic measures. Therefore,
the harmonic measure can be estimated using the random
walks on the 3D mesh, and applied for boundary integration
to estimate the source location on the 2D image plane.

IV. TRAFFIC ANALYSIS ON RANDOM WALKS

A. Settings

We assume that a sensor network W is deployed densely in
a geometric domain R. Packet routing in the sensor network
is done by random walk on the network. Suppose that a
data source at x generated N data messages, we record for
each message the boundary node that receives this message
for the first time. This frequency count can be normalized
as a distribution ω′

x on the sensor network boundary. The
input to the traffic analysis algorithm for the adversary is
the exit distribution ω′

x, together with the geometry of the
sensor network boundary R. The adversary has no knowledge
of the sensor network in the interior of R and would like to
reconstruct the position x.

To reconstruct the source location, we assume that the
sensor network is dense and thus the random walk is a

good approximation of Brownian motion in the continuous
domain R. Therefore, for each point x ∈ R, define by ωx

the exit distribution of Brownian motion starting from x. We
will compare ω′

x to ωx to reconstruct the position of the
source. Notice that in this setting there are two relaxations:
1) the distribution ω′

x is obtained through random walk on
the (unknown) graph W ; 2) the distribution ω′

x is obtained
through a Monte Carlo method, i.e., based on the frequency
count of N random walk samples. Thus our prediction of
the source location could be a bit off from the true source
location. But if random walks on the real sensor network are
good approximations of the Brownian motion in R, and that
the number of samples, N , is not too small, the error in the
prediction is expected to be small. This is indeed confirmed
by simulations in the next section.

We will present two algorithms. The first algorithm provided
a closed-form solution by simply integrating along the domain
boundary R. It works for a single source on a topological disk
domain or topological disk with multiple holes. The second
algorithm is based on maximum likelihood method. Basically
by comparing ω′ and ω (the exit distribution of brownian
motion), we find the source location y such that ω′

x and ωy

are the most similar. This is a generic framework for finding
the locations of multiple data sources or any sources that can
be represented in a compact way.

B. ALG1: Integration Along Domain Boundary

Recall that if u is a harmonic function on the domain Ω,
then its value at any point in the interior can be recovered
by its values on the boundary, as long as one knows the
harmonic measure of the boundary, i.e. u(z0) =

∫
∂Ω

u(z)dωz0

where dωz0 is the harmonic measure with respect to z0.
Clearly, the identity function u(z) = z is holomorphic (i.e., is
differentiable in z), the real part and imaginary part are both
harmonic. Hence we get z0 =

∫
∂Ω

zdωz0 .
For the case of a single source at position z, our construction

algorithm is to simply multiply the coordinates of the location
of a point p ∈ ∂R with its harmonic measure and add the
resultants over the entire boundary. This algorithm is a linear
running time algorithm with complexity dependent only on
the length of the boundary ∂R. The algorithm applies for all
planar domains, including multiply connected ones.
Calculating harmonic measure Now we show how to effi-
ciently compute ω(X,R, z),i.e. for any point z and any subset
X of the boundary of R, the probability that a random walk
started from z will first exit the boundary from X . We first
handle the (highly symmetric) case where the domain is the
disk D; X then is a subset of the unit circle and the starting
point is the origin.

ω(X,D, 0) : This is the probability that a random walk
started from the origin in the disk exits the disk from the set
X on the boundary. Clearly, this is uniform (by symmetry),
and hence ω(X,D, 0) = |X|

2ω . In other words this probability
is just the normalized Euclidean arclength of X .

ω(X,D, z0) : To compute the harmonic measure for an
arbitrary point z0 ∈ D, recall from III that the (conformal)



Möbius transformation g(z) = z−z0
1−z̄0z

maps the unit disk to
itself and sends the point z0 to the origin. Now, we use
the property that the harmonic measure is preserved under
conformal maps to obtain

ω(X,D, z0) = ω(g(X),D, g(z0)) = ω(g(X),D, 0) =
|g(X)|
2ω

ω(X,R, z0) for arbitrary R Here we will describe how to
find the harmonic measure for an arbitrary planar domain R.
The first method only works for simply connected domains
(domains with no holes) while the second works for both
simply and multiply connected domains.
Method 1: Using Riemann Mapping This method uses the
conformal invariance we described in Section III. As above, let
R be a simply connected domain, with boundary Γ a Jordan
curve. In almost all practical applications, one approximates
R by a polygon, and Γ by a polygonal chain. The first
step is to compute the Riemann mapping from D to R. For
accomplishing this task, various methods have been proposed
[19] [8].

So let us assume we have computed the Riemann mapping
f : D −→ R. Notice that f−1 : R −→ D is also
conformal and once again, conformal invariance implies that
ω(X,R, z0) = ω(f−1(X),D, f−1(z0)) and we have shown
how to compute ω(X,D, z) for arbitrary X ⊂ ∂D and z ∈ D
previously.
Method 2: Symm’s Method This method does not require
one to explicitly compute the Riemann Mapping from D to
R, and holds for multi-holed domain. We refer the reader to
[2] for a short summary of this method.

Recall from 1 that for any holomorphic function u on R, we
have the property u(z0) =

∫
∂R u(z)dωz0 . We can discretize

the boundary of R into n intervals {Pj}nj=1, assume that the
harmonic measure is constant in each interval and look at the
discrete counterpart to the above equation:

u(z0) =
∑
j

∫
Pj

u(z)dωz0 =
∑
j

ωz0(Pj)

|Pj |

∫
Pj

u(z)dz

Now if we choose n independent harmonic functions
{ui}ni=1, we get a system of n equations in n unknowns and
we can solve to find ωz0(Pj).

C. ALG2: Maximum Likelihood Method
To apply a maximum likelihood approach (MLE), we first

need the exit distribution/harmonic measure of a Brownian
motion starting at a point z ∈ R, which can be computed using
methods in the section above. We then explain the application
of MLE for different settings.

Let f(.|θ) denote a family of distributions parameterized
by θ. If one observes an i.i.d. sample x1, x2, ...xn from one
of the distributions in this family, the Maximum Likelihood
Method is a way to estimate the true parameter θ0 such that
this sample is most likely to come from f(.|θ0).

Since the observations are assumed to be identically and
independently distributed, the joint density function is

f(x1, x2, ...xn|θ) = f(x1|θ)f(x2|θ)...f(xn|θ)

One then forms the Likelihood Function

ℓ(θ|x1, x2, ...xn) = Πn
i=1f(xi|θ)

The maximum likelihood estimate (MLE) θ̂ is defined to be
the value of θ which maximizes the likelihood function, given
the observed values xi, i.e.

θ̂ = argmaxθ ℓ(θ|x1, x2, ...xn)

For simplicity, the log-likelihood function ℓ̂ = log ℓ is also
used, since log is a monotonic transformation.

From now on, fz := f(x|z) will denote the density function
for the harmonic measure. Denote by Xz the exit position (the
first hit position) of a random walk starting at z. It is a random
variable distributed with density fz; P(Xz ∈ A) =

∫
A
fz(x)dx

for all A ⊂ ∂Ω.
• Single source. Suppose that x1x2, ...xN are the first hit

positions on the boundary for the N messages sent by an
unknown source z0 ∈ R respectively. We know f(x|z)
from the previous section, form the likelihood function
and maximize.

• k sources, k is known. This boils down to the single
source problem for each of the sources. Now let’s assume
that the adversary cannot distinguish the data packets
from different sources. Let the unknown source locations
be z1, ...zk. Then what we observe is the random variable

Y = Xz1 +Xz2 + ...Xzk

Given the zi, the density of Y can be computed. Again
one can form the likelihood function and maximize, now
with respect to the vector of zi. We also allow short-
lived fake message which is sent to a randomly selected
neighbor by the relay node after a real message is relayed.
Our traffic analysis is not affected if the fake messages
are discarded and not relayed any further.

• Source moving on a line. Assuming that we have a
mobile data source moving on a line. The source sends
packets periodically after distance ϵ. We are interested
in estimating the initial position z0 and the direction θ in
which the source is travelling. Let zi = z0+iϵeiθ. Notice
here we just need to estimate 3 real parameters, thus we
could expect to get good estimates with just a lot fewer
data packets per source zi.

V. SIMULATIONS

We conducted extensive simulation tests to examine the
performance of our algorithm to find the source location,
as well as how recovery accuracy is affected by different
parameters.

The simulations were done under different settings, namely
a unit disk, a planar non-disk domain, a planar domain with
holes and a non-planar domain. Also for each type of domain,
we conducted simulations using both a triangle mesh (TM)
and a unit disk graph (UDG). In TM model, we calculated the
transition probability for each node d by it’s neighbors in the
triangulations; for UDG model, we calculated the transition



probability for d by it’s neighbors in the unit disk graph. We
scaled all planar domains inside a 2 × 2 bounding box, and
scaled non planar domains inside a 2×2×2 bounding box. We
use the term Error to measure the distance between the true
source location and the location predicted by our algorithm.
The Errorave and Errormax bellow, which represent the
average and max value of Error, are respect to the bounding
box unit above. In the following, Ndomain represents the
number of nodes inside domain R, Nmsg represents the
number of messages issued at each source node.
Unit Disk Domain Figure 4 right and figure 5 right show
the relationship between Nmsg with Errorave and Errormax

under TM disk model and UDG disk model respectively.
This is obtained by fix Ndomain=1K, then randomly chose
n=100 sources inside the R and issued Nmsg numbers of
random walks started from each of these chosen sources, then
calculated the Errorave and Errormax respectively. Beside
this, we also examined how the location of source (the distance
r from disk center) affects Errorave. We uniformly sampled
0 < r < 1 to get {r1, r2, ...rm}, for each ri we randomly
chose ni=100 points whose distance to center rni satisfies
ri − ε < rni < ri − ε (here we used ε=0.05) as the
source to issue random walk for Nmsg=1000 times. Then we
use our method to predict the source location according to
the boundary message distribution. Based on the real source
location and the one calculated by our method, we computed
Errorave for each ri. Figure 4 left and figure 5 left show the
relationship between ri and Errorave under TM model and
UDG model respectively. We can see that Errorave decreased
while the real source leaving the disk center.

Fig. 4. Left: Distance from Center VS. Errorave under TM Model. Right:
Nmsg VS. Errorave/Errormax under TM Model.

Fig. 5. Distance from Center VS. Errorave under UDG Model. Right: Nmsg

VS. Errorave/Errormax under UDG Model.

Planar non-disk Domains We did the same kind of simulation
on an irregular domain. We evaluated how Nmsg affects

Errorave and Errormax by fix Ndomain=1K. The results are
shown in figure 6. We can see that Errorave and Errormax

decreased while we increased Nmsg. We obtained Errorave
around 0.04 and 0.08 under TM model and UDG model by
100 messages.

Fig. 6. Left: Nmsg VS. Errorave/Errormax under TM Model. Right:
Nmsg VS. Errorave/Errormax under UDG Model.

Planar Domain with Holes The same as above, we evaluated
how Nmsg affects Errorave and Errormax for a planar
domain with holes. For a planar domain with holes, as long as
we can monitor the inside hole boundaries as well, we can just
treat them as the same as outer boundary in the calculation.
The results are shown in figure 7. We obtained Errorave
around 0.04 and 0.07 under TM model and UDG model by
100 messages.

Fig. 7. Left: Nmsg VS. Errorave/Errormax under TM Model. Right:
under UDG Model.

Non-planar Domain For a general non-planar domain, we
first mapped it to the unit disk using conformal mapping
method in [8]. Since Brownian motion is invariant under
conformal mapping, we used the same method to calculate
source location in the parameter domain, then mapped it back
to the original surface. The simulation results are in figure 8.
We obtained Errorave around 0.08 and 0.09 under TM model
and UDG model by 100 messages.
Visualization of Exit Distribution Following we show the
exit distribution along the domain boundary. We took the non-
uniform planar domain, set an arbitrary source and visualizes
the exit distribution (figure 9 left) using small disks along
the boundary with area proportional to NO. of first hit.
We also show the distribution on the parameter domain,
which is obtained by conformally mapping the non-uniform
domain to a unit disk (figure 9 right). The distribution on
the parameter domain gives strong evidence that conformal
mapping preserves Brownian motion. Namely the Brownian
motion starting from source s on surface M is equivalent



Fig. 8. Left: Nmsg VS. Errorave/Errormax under TM Model. Right:
under UDG Model.

to the Brownian motion start from ϕ(s) on surface M̄ , if
ϕ : M → M̄ is a conformal mapping from M to M̄ .

Fig. 9. Left: First Hit Distribution. Right: First Hit Distribution on parameter
domain.
Network Density Versus Average Error To examine how
much the network density Ndomain affects the average dis-
tance error Errorave by fix Nmsg, then varying Ndomain and
observe Errorave. The results are shown in Figure 10.

Fig. 10. Left: Ndomain VS. Errorave under TM. Right: Ndomain VS.
Errorave under UDG.

Multiple Sources We uniformly discretized the unit square
domain into N × N grids(N=20 in our experiment), and
assumed the possible location of a source is on the center
of a grid. For 2 sources case, there are N4/2 numbers of
possible source location combinations. For each possible pair
(si, sj), we issued Nmsg = 2000 numbers of random walks
from s1 and s1 , then stored a set of first hit distributions
{Φij , 0 < i, j < N}. Then we randomly picked sources pair
(s1, s2) to issue N̄msg random walks and obtained a first
hit distribution Φtest. By comparing Φtest with Φij we got
a p-value which stands for the probability that Φtest and Φij

are the same distribution. The i, j which gave the maximum
p-value directly points out the location of si and sj . In this
experiment, we varied N̄msg and obtained a set of Errorave,
like in figure 11. We can see that Errorave decreased as we
increased N̄msg.

Fig. 11. Nmsg VS. Errorave for two sources.

VI. RELATED WORK

Routing that preserves source anonymity has been a topic
of study for a number of years. For routing on the Internet,
one would like to hide the sender’s identity, as phrased in
anonymous routing. The most popular schemes are Chaum’s
mixes [4] and onion routing [20], [21]. In Chaum’s scheme,
the idea is to send the message in an encrypted manner to a
central server called the anonymizer, which removes the source
identity and then sends the message to the receiver. Thus one
cannot differentiate the sources of the messages delivered by
anonymizer. Onion routing uses encryption on source routing,
such that the source identifies the entire routing path to the
destination and encrypt the messages in layers in the order
of the nodes along the path. Each relay node descrypt the
message using its own private key, which reveals the next hop
and sends the message. In this way each node on the path is
only aware of the immediate upstream and downstream node
and is not aware of the entire path, in particular the source
identity. Both schemes cannot be applied in sensor network
setting since we cannot afford a central server, and public
key encryption is too heavy for sensor nodes. In addition,
encryption based security schemes only protect the content
of the messages but cannot deal with traffic analysis attacks.

Existing schemes for preserving source location privacy is
summarized in a recent survey [13]. Among them, random
walk is a commonly used component. Phantom routing [10],
[18] first uses random walk to arrive at a node that is
reasonably far away from the source and then use probabilistic
flooding to deliver the message to the destination. Followup
schemes such as in [14], [16], [23] use biased random walk
in order to get farther away from the data source, or introduce
fake data sources to further confuse the traffic pattern [10],
[17]. In the next section we examine some of these variations
and discuss the performance of the traffic analysis attack for
these cases.

VII. DISCUSSIONS

Length of Random walks Our traffic analysis scheme uses
the exit distribution of random walks on the network boundary.
This means that the random walks should be long enough
so that they hit the network boundary with good probability
before they stop. We argue that this is true as the random
walks should be long enough to deliver the message to the
data sink. If the data sink is at an unknown location in the



network, the random walk should be long enough so that it
visits every node in the network. This is termed as the cover
time, defined as the expected number of steps for a random
walk to cover all the nodes in the network [15]. For a 2D grid
of n nodes the cover time is roughly in the order of Ω(n2).

To estimate the probability that a random walk of length
h hits the network boundary, we again consider a 2D grid
of n nodes. Suppose Xi is the displacement vector of the
i-th step of the random walk. Xi is uniformly chosen from
{(1, 0), (−1, 0), (0, 1), (0,−1)}. The position of random walk
after i steps starting from the center of the grid is simply
Pi = X1 +X2 + · · ·+Xi. By the central limit theorem, Pi is
a Gaussian distribution with mean (0, 0) and variance h/2I,
where I is a 2 × 2 identity matrix. Thus the probability that
Pi is outside a disk of radius r from the center is estimated as
e−r2/h. Choose h to be O(n2) and r to be

√
n, the probability

above is 1− 1/n. This means that the random walk of length
O(n2) has a high probability to hit the network boundary
at least once. This means that for a random walk to deliver
the message to the sink, it must hit the boundary with high
probability. This assures that the traffic analysis along the
boundary could be performed.
Directed or Biased random walk In a standard random walk,
the next node to visit is chosen uniformly randomly from all
neighbors. This is the discrete analog of Brownian motion
which is isotropic. The first variation to it is to define a
non-uniform probability distribution on neighbors. In Phantom
routing and a number of followup papers, a biased random
walk is often adopted in which the neighbor that is farther
away from the data source is chosen with higher probability,
in order to quickly get to the regions far away from the
data source. For example, in sector-based directed random
walk [10], a random walk from the west will be sent to a
node to the east, chosen uniformly randomly. In hop-based
directed random walk [10], [16], a random walk chooses the
next hop uniformly randomly among only the nodes closer to
the sink.

If the transition probability is non-uniform but determined
(as in the two cases mentioned above), the harmonic measure
as defined by the random walk will change. If the transition
probability is known to the adversary, we can still calculate
the harmonic measure under this change. Using the same
idea presented in the paper one can still infer the source
location. Therefore to make a biased random walk to be a
countermeasure of the traffic analysis, we need to make the
transition probability to be unknown to the adversary. One idea
is to vary this transition probability randomly and periodically.
However, in this case one should be careful about the transition
probability configuration to make sure that the random walk
is still ergodic1 – otherwise there is no guarantee that the
random walk covers the entire network and eventually delivers
the message to the data sink.

1A random walk is ergodic when there is a unique stationary distribution.
This requires the graph (implied by the edges with non-zero transitional
probability) to be connected and non-bipartite.

VIII. CONCLUSION

In this paper we show a traffic analysis scheme such that
an adversary can infer the location of the data source issuing
packets routed by random walks in a sensor network. Since
random walk has been used as a common component in most
of previous work in preserving source location privacy, this re-
opens the question as how to best protect the source location
privacy. We consider this as our future work.

REFERENCES

[1] L. Ahlfors. Lectures in Quasiconformal Mappings. Van Nostrand
Reinhold, New York, 1966.

[2] C. Bishop. The riemann mapping theorem.
http://www.math.sunysb.edu/ bishop/classes/math401.F09/t.pdf.

[3] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite
Element Methods. Springer, 2002.

[4] D. L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM, 24(2):84–90, 1981.

[5] P. G. Doyle and J. L. Snell. Random Walks and Electric Networks. The
Mathematical Association of America, 1984.

[6] H. M. Farkas and I. Kra. Riemann Surfaces. Springer, 2004.
[7] J. Garnett and D. Marshall. Harmonc Measure. Cambridge University

Press, 2005.
[8] X. Gu and S.-T. Yau. Global conformal parameterization. In L. Kobbelt,
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