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Abstract. Load balanced routing is a long standing yet challenging problem.
Despite many years’ of work there is still a gap between theoretical research and
practical algorithms. The main contribution in this paper is to bridge the gap and
provide rigorous analysis of a practically interesting algorithm for routing in a
large scale sensor network of complex shape – routing by using the medial axis
of the network. In this algorithm, a skeleton of the network is extracted such that
a virtual coordinate system can be developed for greedy routing achieving good
load balance in simulations. We show for the first time a constant approximation
factor for this algorithm by a highly technical analysis. The analysis explains the
performance observed in previous simulations and is also the first known constant
approximation algorithm for load balanced routing in a sensor network with non-
trivial geometry.

1 Introduction

Load balanced routing is a fundamental and challenging problem. It is of crucial im-
portance in wireless sensor networks since overloaded nodes may deplete their battery
prematurely, severely hampering the utility of the network. It is also more challeng-
ing in the sensor network setting as only distributed, lightweight algorithms are useful.
Despite many years’ of research there is still a separation between algorithms with theo-
retical guarantees and algorithms that are practically useful. In the theoretical direction,
load balanced routing is often formulated as minimizing the maximum traffic load of
a given set of routing requests on a network with fixed capacities. Approximation al-
gorithms using global optimizations on graphs [13, 14] do not meet the low resource
requirement and do not have constant approximation ratio. In practice, a number of
algorithms arrive at a good balance between good performance and low requirement
on computation and communication. But nothing provable is known. The results in this
paper bridge the gap by providing the first constant approximation ratio for a practically
interesting algorithm.

Wireless sensor networks differ from other types of networking scenarios in the
rich geometric properties. In this setting, n sensors are embedded (positions chosen
uniformly randomly) in a geometric region Ω ⊂ R2 providing dense coverage of Ω. A
sensor network is a graph on the vertices. We assume that a unit disk graph is used to
model wireless communication: two nodes are connected by an edge if the distance is
at most 1. The load of a node is the number of paths (out of the total
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through it under all-pairs communication. One wishes to find paths that minimize the
maximum load, that are also easy to store/compute.

Unfortunately, understanding the dependency of load balanced routing on the geo-
metric shape of Ω is still very limited. For sensors uniformly randomly placed inside a
disk with all pairs traffic, shortest path routing (i.e., routing paths along straight lines)
will create higher traffic load at the center of the disk. But the highest traffic load can
be shown to be a constant factor away from the optimal solution (minimizing the max-
imum traffic) [8]. Nothing is known on the optimal solution in a disk beyond a discrete
approximation using simulations [12]. Apart from that, constant approximation solution
using greedy routing is known for narrow strips [7] and for simply connected domains
admiting a constant stretch area-preserving map to disks [8]. The general question of
finding a constant approximation load balanced routing scheme for an arbitrary geo-
metric domain is still open.

In this paper we achieve for the first time a constant approximation ratio for load-
balanced routing in a network Ω with arbitrarily complex shape. This problem is sub-
stantially more challenging than the case of a simply connected domain. In the case of a
disk or other simply connected domain, the main challenge is to avoid concentration of
routing paths either at the center of the disk or at a reflex vertex (corner) of the domain.
But when we move to a domain with holes, a new challenge appears. We need to de-
cide how the routing paths get around the holes and how such traffic is distributed. This
decision has to be dependent on the ‘width’ of the corridors on each side of holes. See
Figure 1. Thus the topology of the domain and the topological structure of the routing
paths are essential.

Fig. 1: In simply connected domains, the main challenge is to avoid path concentration (left two
figures). In the case of a non-simple domain, we may need to distribute the paths around the holes
by how much resource we have available along the ‘corridors’.

We show that routing using the medial axis κ of the sensor network field, with
some modification, achieves an approximation factor of O(1), when the source and
destination are uniformly randomly selected. The medial axis of a 2D domain Ω is the
collection of points that have more than one closest points on the boundary of Ω. It is a
planar graph homotopic to Ω. Thus as a skeleton of Ω, it has been used in a distributed
routing algorithm to guide messages to pass around ‘holes’ [3]. Basically the medial
axis is represented by a compact graph to be disseminated to all nodes in the network.
Each node knows its relative position to the medial axis and a greedy routing algorithm
directs a message to the destination by first travelling ‘horizontally’ in parallel with
the medial axis and then ‘vertically’ to the destination. In the same paper it has been
demonstrated using simulations that this algorithm has guaranteed delivery and good
performance in balancing traffic load, compared to other greedy alternatives. In this
paper we build on this algorithm. With an algorithmic enhancement we show that the



maximum traffic load is within a constant factor of the maximum traffic load of optimal
routing algorithm.

Specifically, our contributions are the following:

– We enhance the original medial axis based routing algorithm by running a linear
program (LP) optimization on the medial axis κ. This LP helps us decide how
to distribute routing paths with respect to the holes in the network. The solution
to the LP provides a compact, probabilistic routing guidance. This knowledge is
distributed to all nodes in the network. Each node s stores O(|κ|) information such
that for any destination t, a set of paths with probabilities can be extracted to guide
how the message should travel with respect to the medial axis κ. The actual routing
path is again realized by a local, greedy procedure.

– We show that the above algorithm achieves a constant approximation ratio. The
analysis is highly technical. Majority of the proofs can be found in the journal
version, and we present the intuition and proof sketch in this extended abstract.

Related Work. In the field of networking algorithms, load balanced routing on a graph
with given source destination pairs is a long standing problem. One way to formulate
this problem is to select routes that minimize congestion (the maximum number of
messages that any node/link carries), termed the unsplittable flow problem. Solving
this problem optimally is NP-hard even in very simple networks (such as grid). The
best approximation algorithm has an approximation factor of O(log n/ loglog n) [13,
14] in a network of n vertices. It is also shown that getting an approximation within
factor Ω(loglog n) is NP-hard [1]. Another popular way to formulate the problem is to
consider node disjoint or edge disjoint paths that deliver the largest number of given
source destination pairs. This is again NP-hard [9] and the best approximation factor
known isO(

√
n) [4]. It is NP-hard to approximate within a factor ofΩ(log1/2−ε n) [5].

These approximation algorithms are mostly only of theoretical interest. They require
global knowledge and are not suitable for distributed settings.

In the wireless sensor network setting, a number of algorithms make use of the
geometric property in designing load balanced routing algorithms. Mei and Stefa [11]
suggested to wrap a square network into a torus so as to avoid loading the network
center. Yu et. al [17] map the network as the skeleton of a convex polytope using the
Thurston’s embedding. In [15], a network of multiple holes is converted to the covering
space to ‘remove’ the hole boundaries and prevent them from being heavily loaded. All
of them are shown by simulations to have reasonable performance, but no theoretical
guarantee is known.

2 Our Medial Axis Based Routing Scheme

Before describing our algorithm, we set up the ground work by defining the media axis.
Throughout the paper we consider sensor nodes deployed uniformly in a planar domain
Ω of complicated shape or topology.

Medial Axis in the continuous setting: The medial axis κ of a geometric domain Ω
is defined to be the set of points with more than one closest point to the boundary of
Ω. It is known that κ is a planar graph that is homotopic to Ω [2]. κ is composed of



branches (called medial edges) joined by junction points (called medial vertices), that
can have degree 1 (being the endpoint of a branch) or degree at least 3. Each point a on
the medial axis has a maximal empty disk inside Ω that touches at least two points on
∂Ω. The line segment connecting a with one of its tangent points is called a chord of a.

p

x = κ(p)

y

κ

r(p) = |xp|/|xy|

w
q

Fig. 2: An example of a medial axis of a do-
main Ω. Two medial balls centered at x,w
are shown. We also show a possible routing
path from p to q.

Medial Axis based coordinates: For each
point p ∈ Ω that is not on the medial axis,
from [3] we know that p lies on a chord xy,
with x ∈ κ, y ∈ ∂Ω. And in fact, y is p’s
closest point on ∂Ω. By this property we can
define the projection of p on κ as the point x
and denote it as κ(p). Furthermore, any point
p ∈ Ω \ κ lies on exactly one such chord, and
is uniquely characterized by the endpoints of
this chord (one on κ and one on ∂Ω) and its
Euclidean distance from the endpoint on the
medial axis. Thus, to every point p one can
assign coordinates (x(p), y(p), r(p)) where
x(p) ∈ κ and y(p) ∈ ∂Ω are the endpoints of the unique chord p lies on, and
0 < r(p) = |px(p)|/|x(p)y(p)| < 1 is the normalized distance from x(p).

2.1 Summary of the algorithm

1. Extract the medial axis κ̂ of the discrete sensor network. Assign all the sensors
medial axis based coordinates.

2. Run a flow program on the medial axis graph. This returns a routing scheme on the
medial axis.

3. Store a compact representation of this routing scheme at the sensors, using a com-
pact representation of the medial axis graph (CMAG).

4. Extend the routing scheme on the medial axis to get a routing scheme on the entire
domain, by routing first “in parallel” and then vertically to the medial axis. By
routing in parallel, we move in the direction guided by the routing scheme along
the medial axis and keeping the normalized distance to the medial axis to be the
same (see Figure 2). By routing vertically, we mean the message travels along a
chord towards the destination.

Step 1: Extracting the medial axis and assigning coordinates proceeds by 1) detecting
the boundaries of the sensor domain Ω, 2) flooding to get a discrete medial axis (nodes
having equal hop-counts to the boundary) and finally 3) naming each node by a local
computation. These steps are described in detail in [3] and we omit the discussion here.

2.2 Step 2: The Flow Program

Let the (discrete) medial axis graph be denoted as κ̂ = (V,E), where V is the set of
medial vertices and E is the set of medial edges. (We probably should say what the
shortest path trees are, either here, or in the summary above.) We denote by r̂(v)
the depth of the shortest path tree rooted at v ∈ V , and by n̂(v) the number of sensors



in the tree(s) rooted at this node. For each node we assign a capacity c · r̂(v), where
c > 0 is a parameter.

Our flow program will have k(k − 1) commodities, where k = |V |. We have one
commodity for every ordered pair (i, j) of nodes in V . For an ordered pair (i, j) we
define two commodities ~ij and ~ji. Node i and node j serve as source and sink for
commodity ~ij, and the roles are reversed for ~ji. We set their demands as d~ij = d~ji =

n̂(i)n̂(j).
Let the flow of commodity ~ij along the edge (u, v) be f~ij(u, v). Our flow must

satisfy the following constraints:

– Capacity constraints The load of v is due to three kinds of messages: messages
with source v, messages with destination v, and messages with neither source nor
destination as v.∑

j 6=v

∑
u

f ~vj(v, u) +
∑
j 6=v

∑
u

f ~jv(u, v) +
∑

~ij:i 6=v,j 6=v

∑
u

f~ij(u, v) ≤ cr̂(v)

Note that the first two sums each simplify to m− n̂(v), as there are precisely these
many messages with v as source and destination.

– Flow conservation
∑
w∈V f~ij(u,w) =

∑
w∈V f~ij(w, u) ∀u /∈ {i, j}.

– Demand satisfaction ∀i, j ∈ V, ∑
w∈V f~ij(i, w) =

∑
w∈V f~ij(w, j) = d~ij .

The program we want to run is to minimize c subject to these conditions. Since the
only unknown variables above are the flow quantities, i.e., f~ij(u, v) for commodity ~ij
on edge (u, v), we can do the following: we first fix c large enough (say equal to the
sum of all the demands, which is O(n3), where n is the number of sensors in Ω), and
find whether the set of three constraints are feasible. This would imply that the chosen
capacity is sufficient to route the flows according to the specified demands. We then do
a binary search on the optimal value of c; each time we halve the current value of c and
check for feasibility. Thus we end up with the optimal c, in a runtime that is O(log n)
times the complexity of checking feasibility, which sums up to O(k2 log n). This is
pretty efficient; note that k is the number of nodes on the medial axis κ̂, which is much
smaller than n (the number of sensors).

Once we get the optimal value of c and the corresponding flows f~ij(u, v) on every
edge for every commodity, we can find the paths to take from a particular source i to
source j using the “path stripping” algorithm in [14]. This returns a set of paths that
realize the optimal flow, and these paths constitute the routing scheme on the medial
axis graph κ̂. We call this routing scheme Γκ.

Compact Representation of Γκ Once the medial axis is extracted and the coordinates
are assigned, we also store a compact representation of the medial axis graph, called
CMAG. This graph has the following properties:

1. The number of vertices in the CMAG equals the number of medial vertices.
2. A path (on the medial axis) between two medial vertices that does not go through

any other medial vertex, corresponds to an edge between the corresponding pair of
vertices on the CMAG. Thus “consecutive” medial vertices have an edge between
them.



3. The size of the CMAG is linear in the number of big topological features in Ω; if
Ω has h holes (boundaries), then this graph has size O(h).

The proof of the following theorem can be found in the appendix.

Theorem 1. Let κ̂c = (Vc, Ec) denote the CMAG, with k = O(h) number of vertices
and edges. The routing scheme Γk can be stored compactly in a way that requires O(h)
space for any node on the medial axis, and O(h2h) space for any medial vertex (a
vertex of κ̂c).

2.3 Extending Γκ to Γ on Ω

Given a source-destination pair (s, t) ∈ Ω, we now use Γκ to build a path from s to t.
Roughly, the path starts from s, follows points at the same normalized distance (same
r in terms of the medial axis coordinates in Figure 2) to the medial axis as s until it
arrives at the chord containing t, and then follows part of the chord to arrive at t. The
homotopy of this path is the same as the homotopy of the path from κ(s) to κ(t), as
determined by Γκ.

In the discrete setting chords are replaced by shortest path trees rooted at nodes
on the (discrete) medial axis. Unless the message is already in the tree containing t
(in which case the message is sent along the tree to arrive at t), a node v forwards
the message to a neighboring node with the same (or closest) normalized height as v
(height of v divided by the height of the tree containing v). Which direction to send
is determined by the path Γκ(κ(s), κ(t)), i.e., by the routing scheme on the medial
axis. Due to the discrete nature, a small local detour might be necessary in order to get
to a node with the same normalized height; the message tries to return to the original
normalized height (that of s) as soon as possible.

At last, we remark that we need to also involve the rotary system as introduced
in [3]. Essentially, consider a route along the medial axis, P that goes through a medial
vertex q with degree 3. If the canonical pieces for the two medial edges on P right
before and after q do not share a common chord of q, the message will travel along
a rotary system centered at q by following an arc connecting the two canonical pieces.
There are two arcs connecting the two pieces, clockwise or counterclockwise. In [3], the
direction is arbitrary. Here we always split with probability half among the two choices
so each gets half of the total traffic.

Comparison to the medial axis routing scheme in [3] The idea of routing in parallel to
the medial axis is the same as in [3]; the main innovation here is in the flow program in
Step 2. In [3] the routing used on the medial axis was simply the shortest path routing.
Our routing scheme given by the flow program helps us prove the approximation guar-
antee. Theorem 1 guarantees that this routing scheme is also compactly represented and
lightweight, much like the shortest path scheme.

3 Network Model For Analysis

In this section we describe the network model for our theoretical analysis. We remark
that this model is purely for the proofs and is not necessary for the routing algorithm.



We work with a large number of sensors uniformly distributed in a geometric domainΩ
with holes. We assume that Ω only has a finite number of arc segments on its boundary
∂Ω, that is, a part of the boundary that coincides with part of a circle. In this case, all
but a finite number of points W on the medial axis κ of Ω have only a constant number
of chords. In addition, we will punch a point hole at each point ofW and recompute the
medial axis κ. If there are still points on κwith an infinitely number of chords, we repeat
the same procedure until no point on the medial axis has an infinite number of chords.
We remark that this procedure will only create a finite number of additional point holes.
In the following discussion we also assume there is no degeneracy, i.e., any maximal
empty ball is tangent to at most three points on the boundary. Thus all points on κ
have at most three chords. The domain Ω can be decomposed into canonical pieces by
removing the medial axis and the chords on the medial vertices. Each piece is bounded
by two chords, a medial edge (or a medial vertex) and a piece of ∂Ω.

The next sentence is confusing. I think what you want to say is we work in the
model (with these special sensors) setting? In this paper we work with the discrete
medial axis [3] but for the clarity of the proof, we will work with a ( perhaps add
special?) set of sensors S in Ω and the (discrete) medial axis defined on it.

Discrete Sensors S. We assume that sensors have bounded density ε: inside any disk
of radius ε inside Ω, there is at least one sensor inside. Further we assume that any two
sensors are at distance at least ε/2 apart. The minimum density requirement is typically
guaranteed by sensing coverage requirement. The requirement on minimum distance
separation can be obtained by using a greedy algorithm to subsample in a dense region.
Basically, select any sensor not yet selected, remove all sensors within distance ε/2,
and continue. Any two sensors selected are of distance at least ε/2 apart.

To define a discrete sample of Ω, we also assume a uniform set of sensors along the
continuous medial axis κ with density ε, such that any point of κ has a sensor within
distance ε along κ.

Discrete Medial Axis on S. We define the discrete medial axis on S using the same
ideas as in [3]. First, the sample points on κ are connected into a graph as a discrete
approximation of κ. In the continuous setting a chord is a line segment connecting a
point on the medial axis to a tangent point on the boundary. In the discrete setting, due
to the discrete resolution a chord is a tree Ta rooted at a point a ∈ S on the medial axis.
In particular, suppose a lies on a medial edge, and its neighbors are a1 and a2 to the left
and right of a respectively. Andm1,m2 are halfway midpoints between a1 and a, a and
a2 along κ respectively. Suppose the two chords of m1 and m2 connect to p1, p2 ∈ ∂Ω
respectively. We build a tree Ta containing all the nodes of S inside the region bounded
by four pieces of boundaries: the segment on κ between m1,m2, the two chords m1p1
and m2p2, and the boundary segment between p1p2. See Figure 3.

κ

∂Ω

am1 m2
a1 a2

p1 p2

Fig. 3: A discrete chord.

Consider a canonical piece, we define a normal-
ized contour κi of level i ∈ [0, 1] as the collection of
nodes (sensors) w such that w lies on a chord xy with
x ∈ κ, y ∈ ∂Ω, and i = |wx|/|xy| (the normalized
hop-count distance to κ).

Each node w defines a parent in the tree Ta as the
node that lies on one lower-level contour than w. We



define this tree Ta as the discrete chord of a ∈ κ. For
each point p ∈ S, we denote by a its projection on
κ if Ta contains p. This is denoted by κ̂(p), to be differentiated from the continuous
projection of p on κ. We also denote by r(a) the length of the chord of a. We denote by
r̂(a) the depth of the tree Ta, and n̂(a) the total number of nodes in Ta.

For a node a ∈ κ0 (the medial axis), we first want to understand the relationship
between r̂(a) and n̂(a). In the continuous setting, the analog of r̂(a) refers to the length
of a chord issued at a, while the analog of n̂(a) refers to the measure of the points
on this chord. And these two numbers are actually the same. In this discrete setting,
however, these two measures are different. In the extreme setting, imagine a perfect
disk of radius r. The medial axis is a single point, the center of the disk, o. The chords
are organized in about O(1/ε) trees, each one containing roughly O(r2/ε) nodes. So
in this case r̂(o) = O(r/ε) and n̂(o) = O(r2/ε) – a big discrepancy. However, this can
only happen when the point o has infinitely many chords, i.e., the boundary segment is
part of an arc. Under our assumption, n̂(a) = O(r̂(a)) for any a ∈ κ. The proof of the
following Lemma is in the appendix.

Lemma 2. Suppose any point on the medial axis κ of domain Ω has only a finite num-
ber of tangents. Then n̂(a) = O(r̂(a)) for any a ∈ κ.

Route in Parallel to κ. We elaborate how to route a message ‘in parallel’ to the medial
axis. This is the analog of routing along a normalized contour inside a canonical piece
with respect to the medial edge. That is, we wish to send the message from a node v
to the next node whose projection on κ is along the guidance obtained from the flow
algorithm, and the normalized distance to κ is the same as that of v. In the discrete
setting, suppose v lies on the chord of a1 and the next node on κ is a2. We choose
the next node from the chord of a2. We may not have a node in Ta2 with exactly the
same normalized distance to κ as v. Instead, we choose the node u whose normalized
distance to κ is the closest to the normalized distance from the source s to κ. By our
density constraint, u is within distance ε from the normalized contour κi, where i is the
normalized distance of s to κ.

Route Vertically to κ. When the message gets to a node whose projection to κ is the
same as the projection of the destination t, we simply route the message along the tree
to the destination.

4 Proof of approximation guarantee

In this section we present the proof of the following theorem:

Theorem 3. There exists a constant C ≥ 1 such that the maximum load of the routing
scheme Γ obtained above is at most C times the maximum load of the optimal routing
scheme Γ ∗ on Ω.

Proof Sketch. The proof is highly technical and involves a number of new ideas. The
outline of the proof is shown in Figure 4. Let the maximum load of Γ ∗ be realized at a
point p ∈ Ω, and equal `∗p, and similarly define q and `q for the routing scheme Γ .



OPT Proj. on MA (κ(Γ∗), L
∗(u)
r(u) )

OPT (Γ∗, `∗p)

Flow Routing on MA (Γ∗
k,

L(v)
r(v) )

L(v)/r(v) ≤ L∗(u)/r(u)

`∗p ≥ C1L
∗(u)/r(u)

MA-based Routing (Γ, `q)

`hq ≤ C2L(v)/r(v)

`rq ≤ C3L(v)/r(v)

`vq ≤ C4`
∗
p

Fig. 4: The outline of the proof for medial-axis based routing.

There are three main steps to relate the maximum traffic load of the optimal load
balanced routing algorithm (`∗p at node p), with the maximum traffic load of the me-
dial axis based routing algorithm (`q at node q). In the intermediate steps we will also
consider the projection of optimal routing scheme on medial axis. Denote by κ(Γ ∗) the
“projection” of the optimal routing scheme (for all-pairs) on the medial axis. That is,
for each path γ∗(s, t) ∈ Γ ∗, we project each node onto the medial axis, getting a path
along the medial axis from κ̂(s) to κ̂(t). This path might be non-simple. For example,
it is possible that multiple nodes on the path γ∗(s, t) maps to the same node on κ̂. It is
possible that the projected path revisit a node on κ̂. When such things happen, we sim-
ply remove the redundant segments and only keep a simple path along κ̂. From now, we
measure the traffic load caused by κ(Γ ∗) after this small simplification.

Regarding the traffic model for κ(Γ ∗), it is easy to see that for two nodes i and j
on the medial axis, node i on medial axis sends n̂(i)n̂(j) messages to node j (recall
that n̂(i) is the size of the subtrees rooted at node i) under κ(Γ ∗), and the same amount
goes from node j to node i.

The three steps in Figure 4 relate the traffic load in the four routing algorithms, two
on the original domain Ω and two on the medial axis:

1. Denote by L∗(i) the number of messages passing through node i ∈ κ̂ under the
projection κ(Γ ∗). Let u ∈ κ̂ be the node where the maximum of the quantity
L∗(i)/r̂(i) occurs. We first show that this quantity is bounded; that is,L∗(u)/r̂(u) ≤
4`∗p .

2. On the medial axis, we run an optimization algorithm to find the routing scheme
minimizing L(x)/r̂(x) for any node x on the medial axis, for the given traffic pat-
tern. Minimizing max load is an NP-hard problem when the problem is integral,
i.e., only a single path is taken by each node. But in our case, we use a non-integral
solution which can be interpreted as a family of paths each with a probability mea-
sure. Following the probabilistic routing scheme we can minimize the expected
maximum traffic load. This routing paths are denoted by the family Γκ. Let v ∈ κ̂
be the node where the quantity L(x)/r̂(x) achieves its maximum value (L(x) is the
number of messages passing through x under Γκ). Optimality of the flow program
then implies L(v)/r̂(v) ≤ L∗(u)/r̂(u).

3. In the last step, we take the routing paths along the medial axis and convert them
to routing paths in the original network from the source to destination. Specifically,
for a source s and t in the domain, we first project them to the medial axis along
the chord at κ̂(s), κ̂(t) respectively. Then we use the routing algorithm guided by



Γκ computed in the previous step to compute a path γ(κ̂(s), κ̂(t)) along the medial
axis. This path is then converted to a path in the original domain – specifically,
the message first travels on a path parallel along the medial axis until it arrives at
the chord of t; then it follows the chord to arrive at t. It may also use the rotary
system around a medial vertex. Thus the traffic at q (the node with max load) in our
routing scheme is divided naturally into horizontal (denoted by `hq ), rotary (denoted
by `rq) and vertical (denoted by `vq ) loads. For the horizontal and rotary traffics,
we show that there exist constants C2 and C3 such that `hq ≤ C2L(v)/r̂(v), and
`rq ≤ C3L(v)/r̂(v). For the vertical traffic, we show that it is bounded by the
maximum load of any routing scheme on Ω, including that of the optimum Γ ∗.
Thus we show that `vq = O(`∗p).

Collecting the inequalities, we have that for some constant C, `q ≤ C`∗p. Thus the
medial axis based routing achieves anO(1) approximation in minimizing the maximum
traffic load.

For the complete proof, we urge the reader to read Section 6.3 in Appendix first. In
the following we only present the lemma analyzing the horizontal and rotary loads of
our proposed routing scheme Γ on Ω. The vertical load is in Section 6.4 in appendix.

Let q be the node with the maximum load under the routing scheme Γ with load `q .
Because of the nature of our routing scheme (Manhattan and sometimes-rotary in the
medial axis coordinates), we partition `q into three parts; we write `q = `hq + `rq + `vq
where `hq denotes the number of messages passing through q “horizontally” (entered
from and was forwarded to a node with same normalized height along the tree as q), `rq
denotes the number of messages passing through q in the rotary system, and `vq denotes
the number of messages passing through q “vertically” (were forwarded by q to some
node in the same tree as q).

Lemma 4. Let v ∈ κ̂ be the node where the quantity L(x)/r̂(x) achieves its maximum
value (L(x) is the number of messages passing through x under Γκ), and let q be the
node with the maximum load under the routing scheme Γ with load `q . Then there exist
constants C2 and C3 such that `hq ≤ C2L(v)/r̂(v), and `rq ≤ C3L(v)/r̂(v).

Proof. Proof for `hq : We first note that by definition of L(v)/r̂(v) as the maximum of
the optimal flow, L(κ̂(q))/r̂(κ̂(q)) ≤ L(v)/r̂(v). Hence it suffices to show that there
exists C3 such that `hq ≤ C3L(κ̂(q))/r̂(κ̂(q)). For simplicity, set r := r̂(κ̂(q)). In fact
we will prove that for any node v on the chord of κ̂(q), the traffic load `hv is bounded as
required.

The total horizontal traffic load at κ̂(q) is actually shared by all the nodes in the
chord of κ̂(q). If the nodes in the chord share the traffic uniformly, then the claim is
trivially true. Note that the flow program, and hence our extension, does not distinguish
between nodes on the same chord when it comes to determining homotopy of paths3.

Therefore, the traffic carried by a node is determined by how many sources stay
on the same horizontal level, which can differ. For any node v at normalized height β,
denote byHβ the normalized contour formed by all nodes at normalized height β. Now,

3 For a given destination t, the distribution over the homotopy types of paths from s1 to t or s2
to t is the same, if s1 and s2 are on the same chord.



only the nodes with normalized height within [β − ε, β + ε] may possibly arrive at v,
by our definition. By the bounded density condition, the number of sensor nodes with
normalized height within [β − ε, β + ε] is proportional to the total area occupied by
the points with normalized height in the same range, which is then proportional to the
length of Hβ . Thus we have that
Observation 1: The ratio of the number of messages passing horizontally through a
node v (at height β) and the total number of messages passing through the chord con-
taining v, is proportional to the length of Hβ .

Now we need to examine the length of the contours Hβ for different normalized
distance β ∈ [0, 1]. The heaviest traffic load happens at the node whose depth coincides
with the longest contour. The worst case is that the contour at one particular normalized
height is long, while all the others are very short. The following observation says that
this cannot happen (proof in appendix section 6.5).
Observation 2: SupposeHi is the longest contour, i ∈ [0, 1]. There is a constant δ such
that one of the two cases is true: (i) the contours Hj with j ∈ [i, i + δ] have length
Ω(Length(Hi)); (ii) the contours Hj with j ∈ [i− δ, i] have length Ω(Length(Hi)).

Within the chord of κ̂(q), O(δr) nodes have normalized depth within the range
[i, i + δ] or [i − δ, i]. Even if all other contours have length 0 and the rest of the nodes
in the chord share no traffic within L(κ̂(q)), the maximum node will still receive traffic
load at most L(κ̂(q))/(δr). Since δ is a constant, the claim is true.
Proof of `rq: Some nodes will carry both horizontal traffic and the rotary traffic. The
proof for the rotary traffic being not very high is in fact the same as the argument on
horizontal traffic – by analyzing the length of contours at different normalized depth.
Thus we omit the discussion here.

5 Discussions and open problems

Randomized to deterministic: Note that the paths found by the path stripping algo-
rithm are probabilistic; between a given source-destination pair (s, t) the algorithm re-
turns a probability distribution over the set of all possible paths between s and t. One
could use randomized rounding as in [14] to get deterministic paths between every
pair; however, this will increase our approximation factor from O(1) to a factor that is
slightly sublogarithmic in n (the number of sensors on the medial axis).
Other traffic distributions: In this paper we showed how to get a constant factor ap-
proximation for uniform traffic load. However, our algorithm can easily be generalized
to any arbitrary traffic distributionΠ onΩ, although we cannot prove the approximation
yet. Let Π(s, t) denote the probability of communication between source-destination
nodes s and t respectively. Let u = κ(s) and v = κ(t) be their projections on the me-
dial axis. Denote by Ciu and Cjv denote the set of nodes at depths i and j in the trees
rooted at nodes u and v, respectively, and the cardinalities of these sets by niu and niv ,
respectively.

When we set up the multicommodity flow program, instead of assigning a demand
of rurv between nodes u and v on the medial axis, we now assign a demand

du,v =

r(u)∑
i=1

r(v)∑
j=1

∑
s∈Ciu

∑
t∈Cjv

Π(s, t)

niunjv
,



and run the flow algorithm. The paths generated by the flow algorithm can be extended
to get a routing scheme on Ω that satisfies the traffic distribution Π .

Thus, the two open questions that remain are 1) does the algorithm of this paper
for uniformly deployed nodes and arbitrary traffic patterns provide an approximation
guarantee?, and 2) can one remove the uniformly deployed nodes condition, even for
the uniform traffic distribution?
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6 Appendix

6.1 Proof of Compact Representation

Theorem 5. Let κc = (Vc, Ec) denote the (compacted) Medial Axis Graph, with O(h)
number of vertices and edges. The routing scheme Γk can be stored compactly in a way
that requires O(h) space for any node on the medial axis, and O(h2h) space for any
medial vertex (a vertex of κg).

Proof. For simplicity we let h denote the number of vertices in κc (note that this equals
the set of medial vertices, and is of the same order as the number of holes in Ω). There
are at most 2h simple paths in κc (once we arrive at a medial vertex, there are only two
paths we can use to exit). We consider only simple paths because:

– the routing scheme does not return non-simple paths; loops only end up increasing
the load, and do nothing to help the flow, and

– the flow does not “turn back” while traveling along an edge of κg , or in other words,
a path of degree two nodes on the medial axis.

Each medial vertex stores the probability distribution over routes to every other
medial vertex. There are h − 1 other medial vertices and O(2h) possible simple paths
to each, thus giving us a space of O(h2h) at these h medial vertices.

To get a space of O(h) at all other sensor nodes, we make a couple of observations.
Let e1 and e2 be two edges in κc corresponding to two (medial vertex-free) paths γ1
and γ2 in κ. Denote the end points of γi as γi` and γir (i = 1, 2).

First, consider source-destination pairs (s1, t1) and (s2, t2) with si ∈ γ1 and ti ∈
γ2, such that both routing paths exit γ1 through the same medial vertex (either γ1` or
γ1r) and enter γ2 via the same medial vertex. Assume that these vertices are γ1` and
γ2`; then the portion of the route between the medial vertices is the same (the same
distribution over paths from γ1` to γ2`) for both (s1, t1) and (s2, t2).

Essentially all that s1 needs to know to route to t1 is which endpoint of γ1 to exit,
and which endpoint of γ2 to enter, since the information about the rest of the path is
stored at the medial vertices. We show how to store this information next.

We claim that there are two “switching” vertices v1 and v2 on γ1 and γ2, respec-
tively, such that the following holds:

– If the source s is on the path from γ1` to v1 and the destination is on the path from
γ2` to v2, then the medial vertices on the route are γ1` and γ2`.

– If the source s is on the path from γ1` to v1 and the destination is on the path from
v2 to γ2r, then the medial vertices on the route are γ1` and γ2r.

The other two cases are similar. This can be proved by using a swapping argument,
and by the properties of the path stripping algorithm that realizes the optimal flow.
Consider s ∈ γ1 and three destinations t1, t2, t3 on γ2, in order from left to right. Then
it cannot be that ~st1 and ~st3 enter γ2 from the left, while ~st2 enters it from the right.
By a simple exchange argument one arrives at a contradiction. Thus for every vertex
s ∈ γ1, there is a switching vertex on γ2. Similarly, one can prove that this switching



vertex does not vary as we move s along γ1 until a certain point (which is v1) and then
the path starts entering from the right.

In addition to storing κc, every node stores which side of the switching vertex it is
on for a given edge ei ∈ κc. This amounts to storing a bit-vector of length O(h), thus
completing the proof.

6.2 Proof of Lemma 2

Proof. We first prove the claim for a non-vertex point a ∈ κ. We show that the area of
the region Sa is O(r(a)), where r(a) is the chord length at a.

Suppose a stays on a medial edgeC and we parameterize the edge by length s. Then
a = C(s) for some s. m1 = C(s1), s1 = s−ε/2, m2 = C(s2), s2 = s+ε/2. By [16],
the chord length at any medial axis point between m1 and m2 are actually bounded by
r(a) + O(ε). To show that the area of the region Sa is O(r(a)), we only need to show
that the boundary segment between p1 and p2 is of length at most O(ε).

We consider the boundary segment B whose projection is C, also parameterized by
s. Thus C(s), B(s) : [0, 1] → R2. Consider the vector from a to the corresponding
boundary point p ∈ B, κ(p) = a. This vector is the normal vector at p. Denote byN(s)
the unit length vector along the normal; and r(s) the length of this vector (i.e., the chord
length at a), all parameterized by s. Then B(s) = C(s) +N(s)r(s). The length of the
boundary segment between p1 and p2 is bounded by∫ s2

s1

||B′(s)||ds =
∫ s2

s1

||C ′(s) +N ′(s)r(s) +N(s)r′(s)||ds

≤
∫ s2

s1

||C ′(s)||ds+
∫ s2

s1

||N ′(s)r(s)||ds+
∫ s2

s1

||N(s)r′(s)||ds

Each of the three terms on the right hand side is bounded by ε. Specifically,∫ s2

s1

||C ′(s)||ds =
∫ s2

s1

1ds = s2 − s1 = ε.

For the second term, r(s) is the radius of an empty circle tangent at B, thus r(s) is no
greater than the radius of osculating circle at B(s). This means

r(s) = 1/ curv(B(s)) = 1/|T ′(B(s))| = 1/|N ′(s)|,

where curv(B(s)) is the curvature at B(s) and T ′(B(s)) is the tangent vector at B(s).
Thus the second terms is also bounded by ε. For the third term, recall that N(s) is unit
length vector. Thus∫ s2

s1

||N(s)r′(s)||ds ≤
∫ s2

s1

|r′(s)|ds ≤
∫ s2

s1

1ds = s2 − s1 = ε.

The last inequality follows from the observation |r′
(s)| ≤ 1 in the proof of Lemma

2.3.1 on page 25 of [16].
The case when a is a medial vertex can be handled in the same way, since a has

only a finite number of continuous chords.



6.3 Proofs of First Two Steps in Theorem 3

Lemma 6. Denote by L∗(i) the number of messages passing through node i ∈ κ̂ un-
der the projection κ(Γ ∗). Let u ∈ κ̂ be the node where the maximum of the quantity
L∗(i)/r̂(i) occurs. Then `∗p ≥ C1L

∗(u)/r̂(u), for some constant C1.

Proof. Consider the discrete chord at u, which is a tree Tu with n(u) nodes, each has
traffic at most `∗p (the maximum traffic load). Thus the traffic at u by the projection on κ̂
is L∗(u) ≤ n̂(u)`∗p. The claim follows from the fact that n̂(u) = O(r̂(u)) for any node
u ∈ κ̂ (Lemma 2).

Next, let L(x) be the number of messages passing through x under Γκ (the routing
scheme returned by the multicommodity flow program output), and let v ∈ κ̂ be the
node where the quantity L(x)/r̂(x) achieves its maximum value. Optimality of the
flow program then implies

Lemma 7. L(v)/r̂(v) ≤ L∗(u)/r̂(u).

6.4 Proof of Vertical Load

Here we bound the vertical load of our routing scheme.

Lemma 8. The vertical load `vq at q (the node with max load under Γ ) is no more than
the maximum load of any routing scheme on Ω. In particular, `vq ≤ `∗p, where p is the
node with maximum load in the optimal routing scheme Γ ∗.

Proof. First we estimate the vertical load introduced by our routing scheme. Recall that
a message passes through q vertically iff the destination is in the subtree(s) rooted at
κ(q). Thus the number of messages passing vertically isO(mn(κ(q))), since the source
could be any of them sensors, while the destination must be in the subtree, that has size
O(n(κ(q))).

The proof proceeds by comparing this vertical load to the maximum load of any
routing scheme. We claim that for any routing scheme Γ on the network, the maximum
load of Γ is Ω(m

√
m). This is particularly simple if the network communication graph

is assumed to be planar (e.g., the Delaunay trianguation of the uniformly distributed
sensors) by using the planar separator theorem [10]. The theorem implies that there
exists a cut S of size O(

√
m) such that the removal of this set partitions the graph

into two subgraphs A and B, with no edges from A to B, and both the sizes of A
and B are roughly m/3. This means that during all-pairs communication, there are
Ω(m2) messages with source inA and destination inB, and by definition of S all these
messages must pass through a node in S. This implies that the average load of a node in
S isΩ(m2/

√
m) = Ω(m

√
m), which is clearly no greater than the maximum load over

S. The proof can be generalized to the case when the graph is a unit-disk-graph, using
arguments similar to those presented in [6]. We omit the technical proof for UDGs here,
and emphasize that the same idea applied using the separators for UDGs in [6] works.

Now we show that `v(q) is smaller than the maximum load of any routing scheme.
By arguments above, `v(q) = O(mn(κ(q))) and by Lemma 3, n(κ(q)) = O(r(κ(q)).



Thus if we prove that r(κ(q)) = O(
√
m), we are done, as the max load of any routing

scheme is Ω(m
√
m). This is a simple area argument; the maximal ball centered at κ(q)

and of radius r(κ(q)) is by definition empty and completely contained insideΩ, since it
just touches the boundary at finitely many points. The area of this ball is πr2(κ(q))), and
because of the uniform density assumption, this area must be O(m). Thus r = O(

√
m)

and we are done.

6.5 Proof of Lemma 4

We prove the following observation used in Lemma 4
Observation 2: SupposeHi is the longest contour, i ∈ [0, 1]. There is a constant δ such
that one of the two cases is true: (i) the contours Hj with j ∈ [i, i + δ] have length
Ω(Length(Hi)); (ii) the contours Hj with j ∈ [i− δ, i] have length Ω(Length(Hi)).

There are three cases. Recall that i is the normalized height of the maximum length
contour.

Case 1: i is bounded below by a (fixed) constant. Let j = i− δ. We have

Hi(s) = C(s) + iN(s)r(s)

H
′

i (s) = C
′
(s) + i(N(s)r(s))

′

(N(s)r(s))
′
=
H

′

i (s)− C
′
(s)

i

Further,

Hi(s) = Hj(s) + δN(s)r(s)

H
′

i (s) = H
′

j(s) + δ(N(s)r(s))
′

= H
′

j(s) + δ

(
H

′

i (s)− C
′
(s)

i

)

(1− δ/i)H ′

i (s) = H
′

j(s)−
δ

i
C

′
(s)

||(1− δ/i)H ′

i (s)|| ≤ ||H
′

j(s)||+ ||
δ

i
C

′
(s)||

Integrating, (1− δ/i)Length(Hi) ≤ Length(Hj) +
δ

i
Length(H0)

(1− δ/i)Length(Hi) ≤ Length(Hj) +
δ

i
Length(Hi)

Length(Hj) ≥ (1− 2δ

j
)Length(Hi)

Now choose δ = i/4, we get j = 3i/4, and that Length(Hj) ≥ 1
3Length(Hi), and we

are done (note that δ = i/4 is bounded below by a constant too, this is why we required
i to be bounded below by a constant).

Case 2: i > 0, and is not bounded below by a (fixed) constant.



In this case, we take j = i+ δ.

Hi(s) = Hj(s)− δN(s)r(s)

H
′

i (s) = H
′

j(s)− δ(N(s)r(s))
′

= H
′

j(s)− δ
(
H

′

i (s)− C
′
(s)

i

)

(1 + δ/i)H
′

i (s) = H
′

j(s) +
δ

i
C

′
(s)

||(1 + δ/i)H
′

i (s)|| ≤ ||H
′

j(s)||+ ||
δ

i
C

′
(s)||

Integrating, (1 + δ/i)Length(Hi) ≤ Length(Hj) +
δ

i
Length(H0)

If Length(H0) < Length(Hi) then the last inequality becomes strict and we get
Length(Hi) < Length(Hj), which is a contradiction. Hence Length(H0) = Length(Hi),
in which case the last inequality becomes Length(Hi) ≤ Length(Hj), which by defini-
tion of Hi being longest implies Length(Hj) = Length(Hi).

Case 3: i = 0, i.e. H0 is the longest contour.

Hj(s) = H0(s) + jN(s)r(s)

H0(s) = Hj(s)− jN(s)r(s)

H
′

0(s) = H
′

j(s)− j(N(s)r(s))
′

||H ′

0(s)|| ≤ ||H
′

j(s)||+ ||j(N(s)r(s))
′ ||

In the proof of Lemma 2, we showed that ||(N(s)r(s))
′ || ≤ 2. The last inequality

then reads

||H ′

0(s)|| ≤ ||H
′

j(s)||+ 2j

Integrating, Length(H0) ≤ Length(Hj) + 2jLength(H0)

Length(Hj) ≥ (1− 2j)Length(H0)

Thus ∀j ≤ 1/4, we have that Length(Hj) ≥ 1
2Length(H0), and we are done.


