
Self-Adjusting Binary Search Trees:
What Makes Them Tick?

Parinya Chalermsook1, Mayank Goswami1, László Kozma2, Kurt Mehlhorn1, and
Thatchaphol Saranurak3∗

1 Max-Planck Institute for Informatics, Saarbrücken, Germany 66123.
2 Department of Computer Science, Saarland University, Saarbrücken, Germany 66123.

3 KTH Royal Institute of Technology, Stockholm, Sweden 11428.
Abstract. Splay trees (Sleator and Tarjan [10]) satisfy the so-called access lemma.
Many of the nice properties of splay trees follow from it. What makes self-adjusting
binary search trees (BSTs) satisfy the access lemma? After each access, self-
adjusting BSTs replace the search path by a tree on the same set of nodes (the
after-tree). We identify two simple combinatorial properties of the search path
and the after-tree that imply the access lemma. Our main result

(i) implies the access lemma for all minimally self-adjusting BST algorithms
for which it was known to hold: splay trees and their generalization to
the class of local algorithms (Subramanian [11], Georgakopoulos and Mc-
Clurkin [6]), as well as Greedy BST, introduced by Demaine et al. [4] and
shown to satisfy the access lemma by Fox [5],

(ii) implies that BST algorithms based on “strict” depth-halving satisfy the ac-
cess lemma, addressing an open question that was raised several times since
1985, and

(iii) yields an extremely short proof for theO(logn log logn) amortized access
cost for the path-balance heuristic (proposed by Sleator), matching the best
known bound (Balasubramanian and Raman [2]) to a lower-order factor.

One of our combinatorial properties is locality. We show that any BST-algorithm
that satisfies the access lemma via the sum-of-log (SOL) potential is necessarily
local. The other property states that the sum of the number of leaves of the after-
tree plus the number of side alternations in the search path must be at least a
constant fraction of the length of the search path. We show that a weak form of
this property is necessary for sequential access to be linear.

1 Introduction

The binary search tree (BST) is a fundamental data structure for the dictionary problem.
Self-adjusting BSTs re-arrange the tree in response to data accesses, and are thus able
to adapt to the distribution of queries. We consider the class of minimally self-adjusting
BSTs: algorithms that rearrange only the search path during each access and make the
accessed element the root of the tree. Let s be the element accessed and let P be the
search path to s. Such an algorithm can be seen as a mapping from the search path P
(called “before-path” in the sequel) to a tree A with root s on the same set of nodes
(called “after-tree” in the sequel). Observe that all subtrees that are disjoint from the
before-path can be reattached to the after-tree in a unique way governed by the ordering
of the elements. In the BST model, the cost of the access plus the cost of rearranging is
|P |, see Figure 1 for an example.

∗Work done while at Saarland University.

Fig. 1: The search path to s is shown on the left,
and the after-tree is shown on the right. The
search path P consists of 12 nodes and con-
tains four edges that connect nodes on differ-
ent sides of s (z = 4 in the language of Theo-
rem 1). The after-tree has five leaves. The left-
depth of a in the after tree is three (the path
from the root to a goes left three times) and the
right-depth of y is two. The set {a, c, f, v, y}
is neighborhood-disjoint. The sets {d, e, g},
{b, f}, {x, y}, {w} are monotone.

Let T be a binary search tree on [n]. Let w : [n]→ R>0 be
a positive weight function, and for any set S ⊆ [n], let w(S) =∑
a∈S w(a). Sleator and Tarjan defined the sum-of-log (SOL)

potential function ΦT =
∑
a∈[n] logw(Ta), where Ta is the

subtree of T rooted at a. We say that an algorithm A satisfies
the access lemma (via the SOL potential function) if for all T ′

that can be obtained as a rearrangement done by algorithm A
after some element s is accessed, we have

|P | ≤ ΦT − ΦT ′ +O(1 + log
W

w(s)
),

where P is the search path when accessing s in T and W =
w(T). The access lemma is known to hold for the splay trees
of Sleator and Tarjan [10], for their generalizations to local al-
gorithms by Subramanian [11] and Georgakopoulos and Mc-
Clurkin [6], as well as for Greedy BST, an online algorithm
introduced by Demaine et al. [4] and shown to satisfy access
lemma by Fox [5]. For minimally self-adjusting BSTs, the ac-
cess lemma implies logarithmic amortized cost, static optimal-
ity, and the static finger and working set properties.

Theorem 1. Let A be a minimally self-adjusting BST algorithm. If (i) the number of
leaves of the after-tree is Ω(|P | − z) where P is the search path and z is the number of
“side alternations4” in P and (ii) for any element t > s (resp. t < s), the right-depth
of t (left-depth of t) in the after-tree is O(1), then A satisfies the access lemma.

Note that the conditions in Theorem 1 are purely combinatorial conditions on the
before-paths and after-trees. In particular, the potential function is completely hidden.
The theorem directly implies the access lemma for all BST algorithms mentioned above
and some new ones.

Corollary 2. The following BST algorithms satisfy the access lemma: (i) Splay tree, as
well as its generalizations to local algorithms (ii) Greedy BST, and (iii) new heuristics
based on “strict” depth-halving.

The third part of the corollary addresses an open question raised by several au-
thors [2, 6, 11] about whether some form of depth reduction is sufficient to guarantee
the access lemma. We show that a strict depth-halving suffices.

For the first part, we formulate a global view of splay trees. We find this new de-
scription intuitive and of independent interest. The proof of (i) is only a few lines.

We also prove a partial converse of Theorem 1.

Theorem 3 (Partial Converse). If a BST algorithm satisfies the access lemma via the
SOL-potential function, the after-trees must satisfy condition (ii) of Theorem 1.

4z is the number of edges on the search path connecting nodes on different sides of s. The
right-depth of a node is the number of right-going edges on the path from the root to the node.

2

We call a BST algorithm local if the transformation from before-path to after-tree
can be performed in a bottom-up traversal of the path with a buffer of constant size.
Nodes outside the buffer are already arranged into subtrees of the after-tree. We use
Theorem 3 to show that BST-algorithms satisfying the access lemma (via the SOL-
potential) are necessarily local.

Theorem 4 (Characterization Theorem). If a minimally self-adjusting BST algorithm
satisfies the access lemma via the SOL-potential, then it is local.

The theorem clarifies, why the access lemma was shown only for local BST algo-
rithms.

In the following, we introduce our main technical tools: neighborhood-disjoint and
monotone sets in § 2, and zigzag sets in § 3. Bounding the potential change over these
sets leads to the proof of Theorem 1 in § 3. Corollary 2(i) is also proved in § 3. Corol-
lary 2(ii) is shown in Appendix A.2, and Corollary 2(iii) is the subject of § 4. In § 5 we
show that condition (ii) of Theorem 1 is necessary (Theorem 3), and we argue that a
weaker form of condition (i) must also be fulfilled by any reasonably efficient algorithm.
In § 6 we prove Theorem 4. We defer some of the proofs to the appendix.

Notation: We use Ta or T (a) to denote the subtree of T rooted at a. We use the same
notation to denote the set of elements stored in the subtree. The set of elements stored
in a subtree is an interval of elements. If c and d are the smallest and largest elements
in T (a), we write T (a) = [c, d]. We also use open and half-open intervals to denote
subsets of [n], for example [3, 7) is equal to {3, 4, 5, 6}. We frequently write Φ instead
of ΦT and Φ′ instead of ΦT ′ .

2 Disjoint and Monotone Sets

Let A be any BST algorithm. Consider an access to s and let T and T ′ be the search
trees before and after the access. The main task in proving the access lemma is to relate
the potential difference ΦT − ΦT ′ to the length of the search path. For our arguments,
it is convenient to split the potential into parts that we can argue about separately. For a
subsetX of the nodes, define a partial potential onX as ΦT (X) =

∑
a∈X logw(T (a)).

We start with the observation that the potential change is determined only by the
nodes on the search path and that we can argue about disjoint sets of nodes separately.

Proposition 5. Let P be the search path to s. For a 6∈ P , T (a) = T ′(a). Therefore,

ΦT − ΦT ′ = ΦT (P) − ΦT ′(P). Let X =
⋃̇k
i=1Xi where the sets Xi are pairwise

disjoint. Then ΦT (X)− ΦT ′(X) =
∑k
i=1(ΦT (Xi)− ΦT ′(Xi)).

We next introduce three kinds of sets of nodes, namely neighborhood-disjoint, mono-
tone, and zigzag sets, and derive bounds for the potential change for each one of them.
A subset X of the search path is neighborhood-disjoint if T ′(a) ∩ T ′(a′) = ∅ for all
pairs a 6= a′ ∈ X; remark that this is defined w.r.t. the subtrees after the access. We
bound the change of partial potential for neighborhood-disjoint sets. The proof of the
following lemma was inspired by the proof of the access lemma for Greedy BST by
Fox [5].

3

Lemma 6. Let X be a neighborhood-disjoint set of nodes. Then

|X| ≤ 2 + 8 · log W

w(T (s))
+ ΦT (X)− ΦT ′(X).

Proof: We consider the nodes smaller than s and greater or equal to s separately, i.e.
X = X<s∪̇X≥s. We show |X≥s| ≤ 1 + ΦT (X≥s) − ΦT ′(X≥s) + 4 log W

w(T (s)) , and
the same holds for X<s. We only give the proof for X≥s.

DenoteX≥s by Y = {a0, a1, . . . , aq}where s ≤ a0 < . . . < aq . Before the access,
s is a descendant of a0, a0 is a descendant of a1, and so on. Let T (a0) = [c, d]. Then
[s, a0] ⊆ [c, d] and d < a1. Let w0 = w(T (a0)). For j ≥ 0, define σj as the largest
index ` such that w([c, a`]) ≤ 2jw0. Then σ0 = 0 since weights are positive and [c, d]
is a proper subset of [c, a1]. The set {σ0, . . .} contains at most dlog(W/w0)e distinct
elements. It contains 0 and q.

Now we upper bound the number of i with σj ≤ i < σj+1. We call such an element
ai heavy if w(T ′(ai)) > 2j−1w0. There can be at most 3 heavy elements as otherwise
w([c, aj+1]) ≥

∑
σj≤k<σj+1

w(T ′(ak)) > 4 · 2j−1w0, a contradiction.
Next we count the number of light (= non-heavy) elements. For each such light

element ai, we havew(T ′(ai)) ≤ 2j−1w0. We also havew(T (ai+1)) ≥ w([c, ai+1]) >
w([c, aσj

]) and thus w(T (ai+1)) > 2jw0 by the definition of σj . Thus the ratio ri =
w(T (ai+1))/w(T

′(ai)) ≥ 2 whenever ai is a light element. Moreover, for any i =
0, . . . , q − 1 (for which ai is not necessarily light), we have ri ≥ 1. Thus,

2number of light elements ≤
∏

0≤i≤q−1

ri =

 ∏
0≤i≤q

w(T (ai))

w(T ′(ai))

 · w(T ′(aq))
w0

.

So the number of light elements is at most ΦT (Y)− ΦT ′(Y) + log(W/w0).
Putting the bounds together, we obtain, writing L for log(W/w0):

|Y | ≤ 1 + 3(dLe − 1) + ΦT (Y)− ΦT ′(Y) + L ≤ 1 + 4L+ ΦT (Y)− ΦT ′(Y).

ut
Now we proceed to analyze our second type of subsets, that we call monotone sets.

A subset X of the search path is monotone if all elements in X are larger (smaller) than
s and have the same right-depth (left-depth) in the after-tree.

Lemma 7. Assume s < a < b and that a is a proper descendant of b in P . If {a, b} is
monotone, T ′(a) ⊆ T (b).

Proof: Clearly [s, b] ⊆ T (b). The smallest item in T ′(a) is larger than s, and, since a
and b have the same right-depth, b is larger than all elements in T ′(a). ut

Lemma 8. Let X be a monotone set of nodes. Then

Φ(X)− Φ′(X) + log
W

w(s)
≥ 0.

4

Proof: We order the elements in X = {a1, . . . , aq} such that ai is a proper descendant
of ai+1 in the search path for all i. Then T ′(ai) ⊆ T (ai+1) by monotonicity, and hence

Φ(X)− Φ′(X) = log

∏
a∈X w(T (a))∏
a∈X w(T

′(a))
= log

w(T (a1))

w(T ′(aq))
+

q−1∑
i=1

log
w(T (ai+1))

w(T ′(ai))
.

The second sum is nonnegative. Thus Φ(X)−Φ′(X) ≥ log w(T (a1))
w(T ′(aq))

≥ log w(s)
W . ut

Theorem 9. Suppose that, for every access to an element s, we can partition the ele-
ments on the search path P into at most k neighborhood-disjoint sets D1 to Dk and at
most ` monotone sets M1 to M`. Then∑

i≤k

|Di| ≤ ΦT (S)− ΦT ′(S) + 2k + (8k + `) log
W

w(s)
.

The proof of Theorem 9 follows immediately from Lemma 6 and 8. We next give
some easy applications.

Path-Balance: The path-balance algorithm maps the search path P to a balanced BST
of depth c = dlog2(1 + |P |)e rooted at s. Then

Lemma 10. |P | ≤ Φ(P)− Φ′(P) +O((1 + log |P |)(1 + log(W/w(s)))).

Proof: We decompose P into sets P0 to Pc, where Pk contains the nodes of depth
k in the after-tree. Each Pk is neighborhood-disjoint. An application of Theorem 9
completes the proof. ut

Theorem 11. Path-Balance has amortized cost at most O(log n log log n).

Proof: We choose the uniform weight function: w(a) = 1 for all a. Let ci be the cost of
the i-th access, 1 ≤ i ≤ m, and let C =

∑
1≤i≤m ci be the total cost of the accesses.

Note that
∏
i ci ≤ (C/m)m. The potential of a tree with n items is at most n log n.

Thus C ≤ n log n +
∑

1≤i≤mO((1 + log ci)(1 + log n)) = O((n + m) log n) +
O(m log n) · log(C/m) by Lemma 10. Assume C = K(n + m) log n for some K.
Then K = O(1) +O(1) · log(K log n) and hence K = O(log log n). ut

Greedy BST: The Greedy BST algorithm was introduced by Demaine et al. [4]. It is
an online version of the offline greedy algorithm proposed independently by Lucas and
Munro [7, 8]. The definition of Greedy BST requires a geometric view of BSTs. Our
notions of neighborhood-disjoint and monotone sets translate naturally into geometry,
and this allows us to derive the following theorem.

Theorem 12. Greedy BST satisfies the (geometric) access lemma.

The geometric view of BSTs and the proof of the theorem are deferred to Ap-
pendix C. We remark that once the correspondences to geometric view are explained,
the proof of Theorem 12 is almost immediate.

5

3 Zigzag Sets

Let s be the accessed element and let a1, . . . , a|P |−1 be the reversed search path without
s. For each i, define the set Zi = {ai, ai+1} if ai and ai+1 lie on different sides of s,
and let Zi = ∅ otherwise. The zigzag set ZP is defined as ZP =

⋃
i Zi. In words, the

number of non-empty sets Zi is exactly the number of “side alternations” in the search
path, and the cardinality of ZP is the number of elements involved in such alternations.

Rotate to Root: We first analyze the rotate-to-root algorithm (Allen, Munro [1]), that
brings the accessed element s to the root and arranges the elements smaller (larger) than
s so the ancestor relationship is maintained, see Figure 2 for an illustration.

Lemma 13. |Z| ≤ Φ(ZP)− Φ′(ZP) +O(1 + log W
w(T (s))).

Proof: Because s is made the root and ancestor relationships are preserved otherwise,
T ′(a) = T (a) ∩ (−∞, s) if a < s and T ′(a) = T (a) ∩ (s,∞) if a > s. We first deal
with a single side alternation.

Claim. 2 ≤ Φ(Zi)− Φ′(Zi) + log w(T (ai+1))
w(T (ai))

.

Proof: This proof is essentially the proof of the zig-zag step for splay trees. We give
the proof for the case where ai > s and ai+1 < s; the other case is symmetric. Let
a′ be the left ancestor of ai+1 in P and let a′′ be the right ancestor of ai in P . If
these elements do not exist, they are −∞ and +∞, respectively. Let W1 = w((a′, 0)),
W2 = w((0, a′′)), andW ′ = w((ai+1, 0)). In T , we havew(T (ai)) =W ′+w(s)+W2

and w(T (ai+1)) = W1 + w(s) + W2, and in T ′, we have w(T ′(ai)) = W2 and
w(T ′(ai+1)) =W1.

Thus Φ(Zi) − Φ′(Zi) + log W1+w(s)+W2

W ′+w(s)+W2
≥ log(W1 + w(s) +W2) − logW1 +

log(W2 + w(s) +W ′)− logW2 + log W1+w(s)+W2

W ′+w(s)+W2
≥ 2 log(W1 +W2)− logW1 −

logW2 ≥ 2, since (W1 +W2)
2 ≥ 4W1W2 for all positive numbers W1 and W2. ut

Let Zeven (Zodd) be the union of the Zi with even (odd) indices. One of the two sets
has cardinality at least |ZP | /2. Assume that it is the former; the other case is symmetric.
We sum the statement of the claim over all i in Zeven and obtain∑

i∈Zeven

(
Φ(Zi)− Φ′(Zi) + log

w(T (ai+1))

w(T (ai))

)
≥ 2 |Zeven| ≥ |ZP | .

The elements in ZP \Zeven form two monotone sets and hence Φ(ZP \Zeven)−Φ′(ZP \
Zeven) + 2 log(W/w(s)) ≥ 0. This completes the proof. ut

The following theorem combines all three tools we have introduced: disjoint, mono-
tone, and zigzag sets.

Theorem 14. Suppose that, for every access we can partition P \ s into at most k
neighborhood-disjoint sets D1 to Dk and at most ` monotone sets M1 to M`. Then∑

i≤k

|Di|+ |ZP | ≤ Φ(P)− Φ′(P) +O((k + `)(1 + log
W

w(s)
)).

6

Proof: We view the transformation as a two-step process, i.e., we first rotate s to the
root and then transform the left and right subtrees of s. Let Φ′′ be the potential of the
intermediate tree. By Lemma 13, |ZP | ≤ Φ(P) − Φ′′(P) + O(1 + log W

w(T (s))). By
Theorem 9,

∑
i≤k |Di| ≤ Φ′′(P)− Φ′(P) +O((k + `)(1 + log W

w(T (s)))). ut
We next derive an easy to apply corollary from this theorem. For the statement, we

need the following proposition that follows directly from the definition of monotone
set.

Proposition 15. Let S be a subset of the search path consisting only of elements larger
than s. Then S can be decomposed into ` monotone sets if and only if the elements of S
have only ` different right-depths in the after-tree.

Theorem 16 (Restatement of Theorem 1). Suppose the BST algorithm A rearranges
a search path P that contains z side alternations, into a tree A such that (i) s, the
element accessed, is the root of A, (ii) the number of leaves of A is Ω(|P | − z), (iii)
for every element x larger (smaller) than s, the right-depth (left-depth) of x in A is
bounded by a constant. Then A satisfies the access lemma.

Proof: Let B be the set of leaves of T and let b = |B|. By assumption (ii), there is
a positive constant c such that b ≥ (|T | − z)/c. Then |T | ≤ cb + z. We decompose
P \ s into B and ` monotone sets. By assumption (iii), ` = O(1). An application of
Theorem 14 with k = 1 and ` = O(1) completes the proof. ut

Fig. 2: A global view of splay trees. The transformation from the
left to the middle illustrates rotate-to-root. The transforma-
tion from the left to the right illustrates splay trees.

Splay: Splay extends rotate-to-root: Let s = v0,
v1, . . . vk be the reversed search path. We view
splaying as a two step process, see Figure 2 We
first make s the root and split the search path into
two paths, the path of elements smaller than s and
the path of elements larger than s. If v2i+1 and
v2i+2 are on the same side of s, we rotate them,
i.e., we remove v2i+2 from the path and make it a
child of v2i+1.

Proposition 17. The above description of splay is
equivalent to the Sleator-Tarjan description.

Theorem 18. Splay satisfies access lemma.

Proof: There are |P | /2 − 1 odd-even pairs. For each pair, if there is no side change,
then splay create a new leaf in the after-tree. Thus

of leaves ≥ |P | /2− 1− # of side changes.

Since right-depth (left-depth) of elements in the after-tree of splay is at most 2, an
application of Theorem 16 finishes the proof. ut

7

4 New Heuristics: Depth reduction

Already Sleator and Tarjan [10] formulated the belief that depth-halving is the property
that makes splaying efficient, i.e. the fact that every element on the access path reduces
its distance to the root by a factor of approximately two. Later authors [2,6,11] raised the
question, whether a suitable global depth-reduction property is sufficient to guarantee
the access lemma. Based on Theorem 16, we show that a strict form of depth-halving
suffices to guarantee the access lemma.

Let x and y be two arbitrary nodes on the search path. If y is an ancestor of x in
the search path, but not in the after-tree, then we say that x has lost the ancestor y, and
y has lost the descendant x. Similarly we define gaining an ancestor or a descendant.
We stress that only nodes on the search path (resp. the after-tree) are counted as de-
scendants, and not the nodes of the pendant trees. Let d(x) denote the depth (number
of ancestors) of x in the search path. We give a sufficient condition for a good heuristic,
stated below. The proof is deferred to Appendix B.

Theorem 19. Let A be a minimally self-adjusting BST algorithm that satisfies the fol-
lowing conditions: (i) Every node x on the search path loses at least (12 + ε) · d(x)− c
ancestors, for fixed constants ε > 0, c > 0, and (ii) every node on the search path, ex-
cept the accessed element, gains at most d new descendants, for a fixed constant d > 0.
Then A satisfies the access lemma.

One may ask how tight are the conditions of Theorem 19. If we relax the constant
in the first condition from (12 + ε) to 1

2 , the conditions of Theorem 16 are no longer
implied. Figure 3 in Appendix B shows a rearrangement in which every node loses a
1
2 -fraction of its ancestors, gains at most two ancestors or descendants, yet both the
number of side alternations and the number of leaves created are O(

√
|A|), where A is

the after-tree. If we further relax the ratio to (12−ε), we can construct an example where
the number of alternations and the number of leaves created are only O(log |A|/ε).

Allowing more gained descendants and limiting instead the number of gained an-
cestors is also beyond the strength of Theorem 16. In the example of Figure 3 in Ap-
pendix B every node loses an (1− o(1))-fraction of ancestors, yet the number of leaves
created is only O(

√
|T |) (there are no alternations in the before-path).

Finally, we observe that depth-reduction alone is likely not sufficient: one can re-
structure the access path in such a way that every node reduces its depth by a constant
factor, yet the resulting after-tree has an anti-monotone path of linear size. Figure 4
in Appendix B shows such an example for depth-halving. Based on Theorem 20, this
means that if such a restructuring were to satisfy the access lemma in its full generality,
the SOL potential would not be able to show it.

5 Necessary Conditions

5.1 Necessity of O(1) monotone sets

In this section we show that condition (ii) of Theorem 1 is necessary for any minimally
self-adjusting BST algorithm that satisfies the access lemma via the SOL potential func-
tion.

8

Theorem 20. Consider the transformations from before-path P to after-tree A by al-
gorithm A. If A \ s cannot be decomposed into constantly many monotone sets, then A
does not satisfy the access lemma with the SOL potential.

Proof: We may assume that the right subtree ofA cannot be decomposed into constantly
many monotone sets. Let x > s be a node of maximum right depth inA. By Lemma 15,
we may assume that the right depth is k = ω(1). Let ai1 , . . . , aik be the elements on
the path to x where the right child point is used. All these nodes are descendants of x
in the before-path P .

We now define a weight assignment to the elements of P and the pendent trees for
which the access lemma does not hold with the SOL potential. We assign weight zero
to all pendent trees, weight one to all proper descendants of x in P and weight K to all
ancestors of x in P . Here K is a big number. The total weight W then lies between K
and |P |K.

We next bound the potential change. Let r(ai) = w(T ′(ai))/w(T (ai)) be the ratio
of the weight of the subtree rooted at ai in the after-tree and in the before-path. For any
element aij at which a right turn occurs, we have w(T (aij)) ≤ |P | and w(T ′(aij)) ≥
K. So r(aij) ≥ K/|P |. Consider now any other ai. If it is an ancestor of x in the
before-path, then w(T (ai)) ≤ W and w(T ′(ai)) ≥ K. If it is a descendant of x, then
w(T (ai)) ≤ |P | and w(T ′(ai)) ≥ 1. Thus r(ai) ≥ 1/ |P | for every ai. We conclude

Φ′(T)− Φ(T) ≥ k · log K

|P |
− |P | log |P |.

If A satisfies the access lemma with the SOL potential function, then we must have
Φ′(T)− Φ(T) ≤ O(log W

w(s) − |P |) = O(log(K |P |)). However, if K is large enough
and k = ω(1), then k · lg K

|P | − |P | lg |P | � O(log(K |P |)). ut

5.2 Necessity of many leaves

In this section we study condition (i) of Theorem 1. We show that some such condition
is necessary for an efficient BST algorithm: if a local algorithm consistently creates
only few leaves, it cannot satisfy the sequential access theorem, a natural efficiency
condition known to hold for several BST algorithms [5, 12].

Definition 21. A self-adjusting BST algorithmA satisfies the sequential access theorem
if starting from an arbitrary initial tree T , it can access the elements of T in increasing
order with total cost O(|T |).

Theorem 22. If for all after-trees A created by algorithm A executed on T , it holds
that (i) A can be decomposed into O(1) monotone sets, and (ii) the number of leaves of
A is at most |T |o(1), then A does not satisfy the sequential access theorem.

The rest of the section is devoted to the proof of Theorem 22.
Let T be a tree over [n]. We call a maximal left-leaning path of T a wing of T . More

precisely, a wing is a set {x1, x2, . . . , xk} ⊆ [n], with x1 < · · · < xk, and such that x1
has no left child, xk is either the root of T , or the right child of its parent, and xi is the

9

left child of xi+1 for all 1 ≤ i < k. A wing might consist of a single element. Observe
that the wings of T partition [n] in a unique way, and we call the set of wings of T the
wing partition of T , denoted as wp(T). We define a potential function φ over a BST T
as follows: φ(T) =

∑
w∈wp(T) |w| log(|w|).

Consider the execution of a minimally self-adjusting BST algorithmA for a sequen-
tial access sequence, starting with a left-leaning path T0 as initial tree (i.e. T0 has n as
the root and 1 as the leaf). Let Ti denote the BST after accessing element i. Observe
that within Ti, the elements yet to be accessed (i.e. [i + 1, n]) form a subtree. This is
clearly the case in T0. For the case i > 0, the root is the last accessed element i, and
thus the elements in [i+ 1, n] form the right subtree of the root. We denote the subtree
of Ti consisting of the elements [i+ 1, n] as Ri. Using the previously defined potential
function, we denote φi = φ(Ri).

We make the following easy observations: φ0 = n log n, and φn = 0.
Next, we look at the change in potential due to the restructuring after accessing

element i. Let Pi be the access path when accessing i in Ti−1, and let ni denote its
length, i.e. Pi = (x1, x2, . . . , xni

).
Observe that the access path Pi contains x1 = i − 1 as the root of Ti−1, and the

set {x2, . . . , xni
} denoted as P ′i , which is a wing of Ti−1. To avoid treating the i = 1

case separately, we assume that a “virtual root” 0 is present initially. This node plays
no role in subsequent accesses, and it adds a constant one to the overall access cost. Let
us denote the after-tree resulting from rearranging the path Pi as Ai. Observe that the
root of Ai is i, its left child is i− 1. We denote the tree Ai \ {i− 1} as A′i, and the tree
A′i \ {i}, i.e. the right subtree of i in Ai, as A′′i .

The crucial observation of the proof is that for an arbitrary wing w ∈ wp(Ti), the
following holds: (i) either w was not changed when accessing i, i.e. w ∈ wp(Ti−1),
or (ii) w contains a portion of P ′i , possibly concatenated with an earlier wing, i.e. there
exists some w′ ∈ wp(A′i), such that w′ ⊆ w. In this case, we denote ext(w′) the
extension of w′ to a wing of wp(Ti), i.e. ext(w′) = w \ w′, and either ext(w′) = ∅, or
ext(w′) ∈ wp(Ti−1).

Now we bound the change in potential φi−φi−1. Wings that did not change during
the restructuring (i.e. those of type (i)) do not contribute to the potential difference. Also
note, that i no longer contributes to φi, as it was already accessed. Thus we have for
1 ≤ i ≤ n (assuming that 0 log 0 = 0):

φi − φi−1 =
∑

w′∈wp(A′′i)

(
(|w′|+ |ext(w′)|) · log(|w′|+ |ext(w′)|)− |ext(w′)| · log |ext(w′)|

)
−(ni − 1) log(ni − 1).

We have by simple manipulation, that for 1 ≤ i ≤ n:

φi − φi−1 ≥
∑

w′∈wp(A′′i)

|w′| log |w′| − (ni − 1) log(ni − 1).

By convexity of f(x) = x log x, and observing that |A′′i | = ni − 2, we have

φi − φi−1 ≥ (ni − 2) log
ni − 2

|wp(A′′i)|
− (ni − 1) log(ni − 1).

10

Lemma 23. If T has right-depth m, and k leaves, then |wp(T)| ≤ mk.

Proof: For a wing w, let `(w) be any leaf in the subtree rooted at the node of maximum
depth in the wing. Clearly, for any leaf ` there can be at mostmwings w with `(w) = `.
The claim follows. ut

Thus, |wp(A′′i)| ≤ no(1). Summing the potential differences over i, we get φn −
φ0 = −n log n ≥ −

∑n
i=1 ni log (n

o(1)) − O(n). Denoting the total cost of algorithm
A on the sequential access sequence as C, we obtain C =

∑n
i=1 ni = nω(1).

This shows that A does not satisfy the sequential access theorem.

6 Small Monotonicity-Depth and Local Algorithms

In this section we define a class of minimally self-adjusting BST algorithms that we
call local. We show that an algorithm is local exactly if all after-trees it creates can
be decomposed into constantly many monotone sets. Our definition of local algorithm
is inspired by similar definitions by Subramanian [11] and Georgakopoulos and Mc-
Clurkin [6]. Our locality criterion subsumes both previous definitions, apart from a
technical condition not needed in these works: we require the transformation to bring
the accessed element to the root. We require this (rather natural) condition in order to
simplify the proofs. We mention that it can be removed at considerable expense in tech-
nicalities. Apart from this point, our definition of locality is more general: while existing
local algorithms are oblivious to the global structure of the after-tree, our definition of
local algorithm allows external global advice, as well as non-determinism.

Consider the before-path P and the after-tree A. A decomposition of the transfor-

mation P → T is a sequence of BSTs (P = Q0
P0−→ Q1

P1−→ . . .
Pk−1−−−→ Qk = A), such

that for all i, the tree Qi+1 can be obtained from the tree Qi, by rearranging a path Pi
contained in Qi into a tree Ti, and linking all the attached subtrees in the unique way
given by the element ordering. Clearly, every transformation has such a decomposition,
since a sequence of rotations fulfills the requirement. The decomposition is local with
window-size w, if it satisfies the following conditions:

(i) (start) s ∈ P0, where s is the accessed element in P ,
(ii) (progress) Pi+1 \ Pi 6= ∅, for all i,

(iii) (overlap) Pi+1 ∩ Pi 6= ∅, for all i,
(iv) (no-revisit) (Pi − Pi+1) ∩ Pj = ∅, for all j > i+ 1,
(v) (window-size) |Pi| ≤ w, for some constant w > 0.

We call a minimally self-adjusting algorithmA local, if all the before-path→ after-
tree transformations performed by A have a local decomposition with constant-size
window. Let A be a BST, and let A>, and A< be the right (resp. left) subtree of the root
of T . We say that A can be decomposed into w monotone sets, if there exist wL and
wR, such that wR+wL < w, and A< can be decomposed into wL decreasing sets, and
A> can be decomposed into wR increasing sets.

The following theorem shows that local algorithms are exactly those that respect the
monotone condition of Theorem 16 (proof in Appendix A).

11

Theorem 24. Let A be a minimally self-adjusting algorithm. (i) If A is local with win-
dow size w, then all the after-trees created by A are decomposable into 2w monotone
sets. (ii) If all the after-trees created byA are decomposable into w monotone sets, then
A is local with window-size w.

Because of the equivalence between monotone sets and local algorithms, we have

Theorem 25. If a minimally self-adjusting BST algorithmA satisfies the access lemma
with the SOL potential, then A can be made local.

Open Questions: Does the family of algorithms described by Theorem 16 satisfy other
efficiency-properties not captured by the access lemma? Properties studied in the liter-
ature include sequential access [12], deque [9, 12], dynamic finger [3], or the elusive
dynamic optimality [10].

Is locality a necessary feature of all efficient BST algorithms? We have shown that
some natural heuristics (e.g. path-balance or depth reduction) do not share this property.
A full understanding of such “truly nonlocal” heuristics seems to require further insight.

Acknowledgement: The authors thank Raimund Seidel for suggesting the study of
depth-reducing heuristics and for useful insights about BSTs and splay trees.

References

1. Brian Allen and J. Ian Munro. Self-organizing binary search trees. J. ACM, 25(4):526–535,
1978. 6

2. R. Balasubramanian and Venkatesh Raman. Path balance heuristic for self-adjusting binary
search trees. In Proceedings of FSTTCS, pages 338–348, 1995. 1, 2, 8

3. R. Cole. On the dynamic finger conjecture for splay trees. part ii: The proof. SIAM Journal
on Computing, 30(1):44–85, 2000. 12

4. Erik D. Demaine, Dion Harmon, John Iacono, Daniel M. Kane, and Mihai Patrascu. The
geometry of binary search trees. In SODA 2009, pages 496–505, 2009. 1, 2, 5, 17, 18

5. Kyle Fox. Upper bounds for maximally greedy binary search trees. In WADS 2011, pages
411–422, 2011. 1, 2, 3, 9

6. George F. Georgakopoulos and David J. McClurkin. Generalized template splay: A basic
theory and calculus. Comput. J., 47(1):10–19, 2004. 1, 2, 8, 11, 14

7. Joan M. Lucas. Canonical forms for competitive binary search tree algorithms. Tech. Rep.
DCS-TR-250, Rutgers University, 1988. 5

8. J.Ian Munro. On the competitiveness of linear search. In Mike S. Paterson, editor, Algorithms
- ESA 2000, volume 1879 of Lecture Notes in Computer Science, pages 338–345. 2000. 5

9. Seth Pettie. Splay trees, Davenport-Schinzel sequences, and the deque conjecture. SODA
2008, pages 1457–1467, 2008. 12

10. Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. J. ACM,
32(3):652–686, 1985. 1, 2, 8, 12

11. Ashok Subramanian. An explanation of splaying. J. Algorithms, 20(3):512–525, 1996. 1, 2,
8, 11, 14

12. Robert Endre Tarjan. Sequential access in splay trees takes linear time. Combinatorica,
5(4):367–378, 1985. 9, 12

12

A Proofs Omitted from Section 6

A.1 Proof of Theorem 24

Let s denote the accessed element in the before-path P (i.e. the root of T).
(i) Suppose for contradiction that the after-tree A is not decomposable into 2w

monotone sets. As a corollary of Lemma 15, A contains a sequence of elements x1, x2,
. . . , xw+1 such that either (a) s < x1 < · · · < xw+1, or (b) xw+1 < xw < · · · < x1 <
s holds, and xi+1 is a descendant of xi for all i. Assume that case (a) holds; the other
case is symmetric.

Let i′ be the first index for which xw+1 ∈ Pi′ . From the (window-size) condition we
know that Pi′ contains at most w elements, and thus there exists some index j < w+1
such that xj /∈ Pi′ . As xj is a descendant of xw+1 in the before-path, it was on some
path P ′′i for i′′ < i′, and due to the (no-revisit) condition it will not be on another path
in the future. Thus, it is impossible that xj becomes an ancestor of xw+1, so no local
algorithm can create T from P .

(ii) We give an explicit local algorithm A that creates the tree A from path P . As in
the proof of Lemma 15 we decomposeA> = R1∪̇ . . . ∪̇RwR

, andA< = L1∪̇ . . . ∪̇LwL
,

where Ri (resp. Li) is the set of elements whose search path contains exactly i right
(resp. left) turns. Let L0 = R0 = {s}. Let P = (x1, x2, . . . , xk = s) be the search
path for s, i.e., x1 is the root of the current tree and xj+1 is a child of xj . For any j,
let tj(Ri) be the element in Ri ∩ {xj , . . . , xk} with minimal index; tj(Li) is defined
analogously.

For any node x of A, let the first right ancestor FRA(x) be the first ancestor of x in
A that is larger than x (if any) and let the first left ancestor FLA(x) be the first ancestor
of x smaller than x (if any).

Lemma 26. Fix j, let X = {xj , . . . , xk}, consider any i ≥ 1, and let x = tj(Ri).
(i) If x is a right child in A then its parent belongs to X ∩Ri−1.

(ii) If x is a left child in A, then FLA(x) is equal to tj(Xi−1) and FRA(x) 6∈ X .
(iii) If x is a right child and FRA(x) ∈ X then all nodes in the subtree of A rooted at

x belong to X .
(iv) If FRA(x) ∈ X then FRA(tj(R`)) ∈ X for all ` ≥ i.

Proof:
(i) The parent of x lies between s and x and hence belongs to X . By definition of the

Ri’s, it also belongs to Ri−1.
(ii) parent(x) ∈ Ri and hence, by definition of tj(Ri), parent(x) 6∈ X . FLA(x) < x

and hence FLA(x) ∈ X ∩ Ri−1. The element in Ri−1 after FLA(x) is larger
than parent(x) and hence does not belong to X . The second claim holds since
FRA(x) ∈ Ri if x is a left child.

(iii) The elements between s and FRA(x) (inclusive) belong to X .
(iv) Since z = FRA(x) ∈ X , x is a right child and z belongs to R` for some ` < i.

Since x = tj(Ri), the right subtree of z contains no element in X ∩Ri. Consider
any ` > i. Then tj(R`) must lie in the left subtree of z and hence FRA(tj(R`) ≤
z. Thus FRA(tj(R`)) ∈ X .

13

ut
We are now ready for the algorithm. We traverse the search path P to s backwards

towards the root. Let P = (x1, x2, . . . , xk = s). Assume that we have reached node xj .
Let X = {xj , . . . , xk}. We maintain an active set A of nodes. It consists of all tj(Ri)
such that FRA(tj(Ri)) 6∈ X and all tj(Li) such that FLA(tj(Li)) 6∈ X . When j = k,
A = {s}. Consider any y ∈ A and assume parent(y) ∈ X . Then y must be a right
child by (ii) and FRA(y) 6∈ X . Since FRA(y) is also FRA(parent(y)), the parent is
also active.

By part (iv) of the preceding Lemma, there are indices ` and r such that exactly
the nodes tj(L−`) to tj(Rr) are active. When j = k, only tj(R0) = s is active. We
maintain the active nodes in a path P ′. By the preceding paragraph, the nodes in X \A
form subtrees of T . We attach them to P ′ at the appropriate places and we also attach
P ′ to the initial segment x1 to xj−1 of P .

What are the actions required when we move from xj to xj−1? Assume xj−1 > s
and let X ′ = {xj−1, . . . , xk}. Also assume that xj−1 belongs to Ri and hence xj−1 =
tj−1(Ri). For all ` 6= i, tj(R`) = tj−1(R`). Notice that xj−1 is larger than all elements
in X and hence FRA(xj−1) 6∈ X ′. Thus xj−1 becomes an active element and the
tj(R`) for ` < i are active and will stay active. All tj(R`), ` > j, with FRA(tj(R`)) =
xj−1 will become inactive and part of the subtree of T formed by the inactive nodes
between tj−1(Ri−1) and xj−1. We change the path P ′ accordingly.

Remark: The algorithm in the proof of Theorem 24 relies on advice about the global
structure of the before-path to after-tree transformation, in particular, it needs informa-
tion about the nearest left- or right- ancestor of a node in the after-tree T . This fact
makes Theorem 24 more generally applicable. We observe that a limited amount of in-
formation about the already-processed structure of the before-path can be encoded in
the shape of the path P ′ that contains the active set A (the choice of the path shape is
rather arbitrary, as long as the largest or the smallest element is at its root).

A.2 Discussion of Known Local Algorithms

This section further illustrates the generality of Theorem 16. For any element x in T ,
the neighbors of x are the predecessor of x and the successor of x.

Subramanian local algorithm [11]: This type of algorithm is such that 1) there is a
constant D such that the leaf of Pi+D is not a leaf of Ti, 2) if the depth of the leaf li of
Pi is di, then the depth of li and neighbor of li in Ti is less than di.

Georgakopoulos and McClurkin local algorithm [6]: This type of algorithm is such
that 1) the leaf of Pi+1 cannot be a leaf of Ti, 2) if there are k transformations yielding
T1, . . . , Tk, then there are Ω(k) many Ti’s which are not paths.

Theorem 27. Any Subramanian local algorithm is a Georgakopoulos and McClurkin
local algorithm.

14

Proof: The first condition of Subramanian’s implies the first condition of Georgakopou-
los and McClurkin’s by “composing” D transformations together. From now on we can
assume that, for every i, the leaf of Pi+1 cannot be a leaf of Ti even for Subramanian’s
algorithm.

For the second condition, suppose that, for i ∈ {i0, i0 + 1}, the depth of the leaf li
of Pi is di and the depth of li and neighbors of li in Ti is less than di, but Ti is a path.

We claim that composing the i0-th and i0 +1-th transformations give us a non-path
tree. Let l′i0 be the leaf of Ti0 . Let pred and succ be the predecessor and the successor
of li0+1 in Pi0+1. As Ti0 is a path, pred < l′i0 if pred exists, and l′i0 < succ if succ
exists.

There must exist another element x 6= li0+1, pred , succ in Pi0+1. Otherwise, Pi0+1

is of size either 2 or 3. Then there is no transformation such that Ti0+1 is a path and
satisfies Subramanian’s condition.

Since x exists, we know that either x < pred or succ < x. Assume w.l.o.g. that
x < pred . There must, moreover, exist x such that x < pred and x is below pred
in Ti0+1. Otherwise, pred or li0+1 would have depth di0+1 violating Subramanian’s
condition.

Now pred is higher than both x and l′i0 where x < pred < l′i0 . Therefore, there is
a branching in the “composed” transformation. So composing the i0-th and i0 + 1-th
transformations give us a non-path tree. ut

Theorem 28. A Georgakopoulos and McClurkin local algorithm that brings the ac-
cessed element to the root satisfies the conditions of Theorem 16. Hence it satisfies the
access lemma.

Proof: By Theorem 24, we just need to show that the after-tree T has Ω(k − z) leaves,
when P contains z side alternations (zigzag) and there are k transformations. To do
this, we claim that all non-path Ti’s, except O(z) many, contribute a leaf to T .

For each non-path Ti, suppose that there are two leaves l1 and l2 in Ti which are
on the same side. That is, both are less or more than the accessed element s. Then Ti
would contribute one branching to T , because the leaf of Pi+1 cannot be l1 or l2 and so
there will be another element between l1 and l2 placed higher than both of them, which
is a branching. A branching in T contributes a leaf in T .

Now if Ti is not a path but there are no two leaves on the same side: this means
that there is exactly one leaf on left and right side of s. However, there can be at most
w · z = O(z) many of this kind of T ′is. This is because for each side alternation of P ,
the algorithm can bring up at most w elements from another side. ut

B Proof Omitted from Section 4

B.1 Proof of Theorem 19

We show that A satisfies the three conditions of Theorem 16. Condition (i) is satisfied
by definition.

Let s be the accessed element, and let L1 be its left child in the after-tree. Let
(L1, . . . , Lt) denote the longest sequence of nodes such that for all i < t, Li+1 is the

15

right child of Li in the after-tree, and let Ti denote the left subtree of Li for all i ≤ t.
Observe that the nodes in Ti are ancestors of Li in the before-path, therefore, Li has
gained them as descendants. Thus, from condition (ii), we have that |Ti| ≤ d for all i.
Since there are at most d nodes in each subtree, the largest number of left-turns in the
left subtree of s is d. A symmetric statement holds for the right subtree of s. This proves
condition (iii) of Theorem 16.

Next, we show that a linear number of leaves are created, verifying condition (ii) of
Theorem 16.

We claim that there exists a left-ancestor of s in the before-path that loses εd(s)/2−
(c+ 1) left-ancestors, or a right-ancestor of s that loses this number of right-ancestors.

Suppose that there exists such a left-ancestor L of s (the argument on the right is
entirely symmetric). Observe that the left-ancestors that L has not lost form a right-
path, with subtrees hanging to the left; the lost left-ancestors of L are contained in
these subtrees. From the earlier argument, each of these subtrees is of size at most d.
Since the subtrees contain in total at least εd(s)/2− (c+ 1) elements, there are at least
(εd(s)/2− (c+ 1))/d = Ω(d(s)) many of them, thus creating Ω(d(s)) new leaves.

It remains to prove the claim that some ancestor of s loses many ancestors “on the
same side”. Let L and R be the nearest left- (respectively right-) ancestor of s on the
before-path. W.l.o.g. assume that L is the parent of s in the search path. For any node
y, let dl(y), dr(y) denote the number of left- respectively right-ancestors of a node y in
the search path. We consider two cases:

– If dl(s) > dr(s), then dr(L) ≤ d(s)/2. Since L loses (12 + ε) · d(L) − c ≥
(12 + ε)d(s)− (c+1) ancestors, it muse lose at least εd(s)− (c+1) left-ancestors.

– Suppose now that dl(s) ≤ dr(s). Then dl(R) < dr(R) and hence dl(R) ≤
d(R)/2. At the same time d(R) ≥ dr(R) = dr(s) − 1 ≥ (d(s) − 2)/2. Since R
loses (12 + ε) ·d(R)− c ancestors, it must lose at least (12 + ε) ·d(R)− c−dl(R) ≥
ε · (d(s)− 2)/2− c ≥ εd(s)/2− (c+ 1) right-ancestors.

Fig. 3: Rearrangements which do not satisfy Theorem 16. Let z, ` be the number of side al-
ternations in the before-path and the number of leaves in the after-tree respectively. Let
n = |T |.
(left) A rearrangement in which every node loses half of its ancestors and gains only one
new descendant. However, z, ` = O(

√
n).

(right) A rearrangement in which every node loses a (1 − o(1))-fraction of its ancestors
and gains only one new ancestor. However, z = 0, ` = O(

√
n).

16

Fig. 4: A rearrangement in which every node approximately halves its depth. However, there
is an element x < y whose search path contains Ω(n) left turns. By Theorem 24 and
Theorem 20, this rearrangement cannot satisfy access lemma with the SOL potential.

C Geometric BST Algorithms

In this section, we show that our results can be extended to apply even in the geometric
view of BST algorithms which was introduced by Demaine et al. in [4]. In particular,
we prove that Greedy BST satisfies the access lemma.

A height diagram h : [n] → N is a function mapping [n] to the natural numbers.
We say that h has tree structure if, for any interval [a, b], there is a unique maximum in
{h(a), h(a + 1), . . . , h(b)}. For any BST T on [n], let H be the height of T and, for
any element a ∈ [n], let d(a) be its depth. The height diagram hT of BST T is defined
such that hT (a) = H − d(a) for each a. See Figure 5 for an example height diagram of
a BST. The proof of the next proposition is straightforward.

Proposition 29. A height diagram h has tree structure iff, for some BST T , h is the
height diagram of T .

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Fig. 5: (left) BST with search path and subtree of node 5 shown; (right) height diagram with stair
(dashes) and neighborhood (arrow) of element 5 shown.

Fix a height diagram h. We now define stair and neighborhood of each element
a ∈ [n]. The stair of a, denoted by stairh(a), contains the element b if and only if the

17

rectangular region formed by (a,∞) and (b, h(b)) does not contain any point (b′, h(b′))
for b′ ∈ [n].5 The neighborhood of a, denoted by Nh(a), is the maximal open interval
(x, y) such that a ∈ (x, y) and there is no element b ∈ (x, y) where h(b) ≥ h(a). We
remark that the neighborhood is thought of as an interval of reals. See Figure 5 for the
geometric view of stairs and neighborhoods.

Proposition 30. Let h be a height diagram of BST T . Then, for any element a ∈ [n],
stairh(a) contains exactly the elements on the search path of a in T , and Nh(a) ∩ [n]
contains exactly the elements in the subtree of T rooted at a.

Therefore, to put it in this geometric setting, minimally self-adjusting BSTs (or
simply BSTs) are algorithms that, given a height diagram h with tree structure and
accessed element s, may change the height of elements only in stairh(s) so that no
element in stairh(s) has height less than or equal the height of any element outside
stairh(s). The adjusted height diagram h′ must have tree structure.

Minimally self-adjusting geometric BSTs (or simply geometric BSTs) are just min-
imally self-adjusting BSTs without restrictions that h and h′ must have tree structure.
More precisely, let A be a geometric BST. Given a height diagram h and an accessed
element s,Amay change the height of elements only in stairh(s) so that no element in
stairh(s) has height less than or equal the height of any element outside stairh(s). Let
h′ be the new height diagram h′. The access cost is |stairh(s)|. For example, Greedy
BST from the formulation of [4] just changes the height of all elements in stairh(s) to
any constant greater than the height of elements outside stairh(s).

The following theorem shows that even though geometric BSTs are generalization
of BSTs, their costs are within a constant factor of BSTs.

Theorem 31 ([4]). For any geometric BST algorithm A, there is a BST algorithm A′
whose amortized cost is at most O(1) times the access cost of A, for each access.

Geometric Access Lemma: We define the geometric variant of the Sleator-Tarjan po-
tential as Φh =

∑
a∈[n] logw(Nh(a)). Let A be a geometric BST algorithm. Let

h : [n] → N be a height diagram and let h′ be the output of algorithm A when ac-
cessing element s ∈ [n]. AlgorithmA satisfies the access lemma (via the SOL potential
function) if

Φh − Φh′ +O(1 + log
W

w(s)
) ≥ Ω(|stairh(s)|).

The geometric access lemma similarly implies logarithmic amortized cost, static opti-
mality, and the static finger and working set properties.

Next, we will define the geometric analogue of a neighborhood-disjoint set. Fix the
height diagram h, the accessed element s and the new height diagram h′. A subset X
of stairh(s) is neighborhood-disjoint if Nh′(a)∩Nh′(a′) = ∅ for all a 6= a′ ∈ X . The
following lemma can be proven in the same way as Lemma 6.

Lemma 32. Let X be a neighborhood-disjoint set of nodes. Then

|X| ≤ 2 + 8 · log W

w(Nh(s))
+ Φh(X)− Φh′(X).

5The reader familiar with the geometric view of Demaine et al. [4] might recognize here the
relation with the concept of unsatisfied rectangles.

18

Theorem 33 (Restatement of Theorem 12). Let S = stairh(s). Φh′(S) − Φh(S) ≤
O(1 + log W

w(s))− |S|. Thus, Greedy BST satisfies the access lemma.

Proof: Write S = {a1, . . . , ak} where ai < ai+1. Notice that element ai ∈ S has
neighborhood Nh′(ai) = (ai−1, ai+1). We decompose S = Sodd∪̇Seven where Sodd
and Seven are the odd and even elements in S. Both sets are neighborhood-disjoint. An
application of Lemma 32 yields the claim. ut
Remark: It is also straightforward to define monotone set and zigzag set in geometric
setting and prove a geometric analogue of Theorem 16.

19

	-1.5ex Self-Adjusting Binary Search Trees: What Makes Them Tick?-1.5ex
	 Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and Thatchaphol Saranurak

