
Proceedings of the 28th Fall Workshop on

Computational Geometry (FWCG 2018).

Queens College, City University of New York, Flushing, NY

Program Committee:

1. Chao Chen (Stony Brook University)

2. Hu Ding (Michigan State University)

3. Mayank Goswami (Chair, Queens College, City University of
New York)

4. Jonathan Lenchner (IBM research Africa)

5. Joseph S.B. Mitchell (Stony Brook University)

6. Miguel A. Mosteiro (Pace University)

7. Megan Owen (Lehman College, City University of New York)

8. Christiane Schmidt (Linkoping University, Sweden)

9. Jack Snoeyink (Univeristy of North Carolina)

1

1

Fibres of Failure: Classifying errors in predictive
processes

Leo Carlsson Gunnar Carlsson Mikael Vejdemo-Johansson

Abstract—Predictive models are used in many dif-
ferent fields of science and engineering and are always
prone to make faulty predictions. These faulty predic-
tions can be more or less malignant depending on the
model application.

We describe Fibres of Failure (FiFa), a method to
classify failure modes of predictive processes using the
Mapper algorithm from Topological Data Analysis. Our
method uses Mapper, an algorithm from Topological
Data Analysis (TDA), to build a graph model of input
data stratified by prediction error. Groupings found
in high-error regions of the Mapper model then pro-
vide distinct failure modes of the predictive process
that can be further analyzed in subsequent steps. We
demonstrate two ways to use the failure mode group-
ings: either to produce a correction layer that adjusts
predictions by similarity to the failure modes; or to
inspect members of the failure modes to illustrate and
investigate what characterizes each failure mode. We
demonstrate FiFa on two scenarios; a Convolutional
Neural Network (CNN) predicting MNIST images with
added noise, and an energy model predicting the end-
point temperature of molten steel in an Electric Arc
Furnace (EAF) producing clean steel.

I. Introduction
Predictive processes are used across many different fields

in both science and engineering. All predictive processes
produce some sort of error which makes them less practical
in use. However, most predictive processes produce consis-
tent error of single or multiple distinct types. If one could
exploit these consistent errors then it would be possible
to improve the predictions as an additional step on top of
the predictive process.

We introduce Fibres of Failure (FiFa) as a method
to classify consistent error from predictive processes, and
analyze these error types both qualitatively and quantita-
tively. In the qualitative case we focus on domain-specific
reasons as to why the consistent error(s) persist. In the
quantitative case we exploit the consistent bias to adjust
predicted values, as an additional step, closer to their true
values.

The FiFa method builds on Mapper, an algorithm
from Topological Data Analysis that constructs a graph
(or simplicial complex) model of arbitrary data.

Our running examples to demonstrate the FiFa method
will be first a Convolutional Neural Network (CNN) model

This project has received support from: Hugo Carlssons Stiftelse
för Vetenskaplig Forskning; a PSC-CUNY Award, jointly funded by
The Professional Staff Congress and The City University of New
York; and a donation of the Titan X Pascal GPU by the NVIDIA
Corporation.

predicting hand-written digits from the MNIST data set,
trained on clean images but used on noisy images; and
second an Electric Arc Furnace (EAF) energy model
predicting the end-point temperature of molten steel.

II. Preliminaries
We concern ourselves with failures in predictive pro-

cesses. Given some observable process that given known
input values X produces some distribution of observable
values Y ∼ D(X), a predictive process can be considered
to be a method for creating a probability distribution of
predicted values Ŷ ∼ D̂(X).

With past observations Xi,Yi we can establish a measure
of prediction error Ei = E (Yi,Ŷ). In our work, the focus is
on finding regions of input space that tend to produce large
prediction errors: Xi such that |Ei| is large.

To illustrate and evaluate our approach, we will study
two settings:

1) A CNN model is trained on the MNIST dataset,
achieving a high performance in predicting correct
digit classifications from handwritten digits. We then
expose the model to severely noise corrupted versions
of the MNIST digits and analyze the resulting failure.
Here, the model produces a probability distribution
on the set {0,1,2,3,4,5,6,7,8,9} and we take as a
measure of error the predicted probability of the
correct class: this value will be low in case of an error,
and high in case of a correct prediction.

2) Data from an Electric Arc Furnace. The furnace uses
a temperature model to predict internal temperature
Tp of the steel in order to stop the furnace after all
steel has melted but before before the molten steel
reaches elevated temperatures that dramatically in-
creases the wear and tear of the furnace. Before
pouring, a temperature measure is taken to establish
a ground truth measurement of temperature Tm. The
prediction error measure is ∆T = Tp −Tm.

A. Mapper
Mapper (Singh et al, 2007) is an algorithm that con-

structs a graph (more generally a simplicial complex)
model for a point cloud data set. The graph is constructed
systematically from some well defined input data.

Let X be a finite metric space. The following steps
construct the Mapper complex:

1) Choose a collection of maps f1, . . . , fk : X → R, or
equivalently some f : X → Rk. These are usually
referred to as lenses or filters.

2

2) Choose a covering U = {U1, . . .} of Rk: an overlapping
partition of possible filter value combinations.

3) Pull the covering back to a covering V of X , where
Vi ∈ V = f −1(Ui).

4) Refine the covering V to a covering V̂ by clustering
each Vi.

5) Create the nerve complex of the covering V̂: as ver-
tices of the complex we choose the indexing set of V̂,
and a simplex [i0, . . . , i j] is included if V̂i0 ∩·· ·∩V̂i j ̸= /0.

The filters act as measures of enforced separation: data
points with sufficiently different values for the filter func-
tion are guaranteed to be separated to distinct vertices in
the Mapper complex, while the nerve complex construc-
tion ensures that connectivity information is not lost in
the process.

More detailed expositions can be found in (Singh et al,
2007) and (Carlsson, 2009)

For our work we are using the Ayasdi implementation
of Mapper.

III. Proposed method
A. Mapper on prediction failure

The filters in the Mapper function have the effect
of ensuring separation of features in the data that are
separated by the filter functions themselves. In the setting
of prediction failures, we leverage this feature to create
Mapper models that enforce a separation on prediction
errors, allowing the subsequent analysis to identify con-
tiguous regions of input space with consistent and large
prediction errors.

We name the process of using Mapper with prediction
error as a filter in order to classify prediction failures the
Fibres of Failure method, and the resulting Mapper model
we name a FiFa model.

B. Extracting subgroups
Subgroups of the FiFa model with tight connectivity

in the graph structure and with homogeneous and large
average prediction failure per component cluster provide a
classification of failure modes. These can be selected either
manually, or using a community detection algorithm.

When selecting failure modes manually, a visualization
such as in Figure 2 is most helpful. Here, flares (tightly con-
nected subgraphs emanating from a core, such as Group
40) or tightly connected components, loosely connected to
surrounding parts of the graph, are the most compelling
characterizations of a good failure mode subgroup. When
extracting subgroups manually, the intent is always to
extract groups where the prediction error is as close to
constant as possible.

C. Quantitative: Model correction layer
Once failure modes have been identified, one way to

use the identification is to add a correction layer to the
predictive process. Use a classifier to recognize input data
similar to a known failure mode, and adjust the predictive
process output according to the behavior of the failure
mode in available training data.

1) Train classifiers: For our illustrative examples, we
demonstrate several “one vs rest” binary classifier ensem-
bles where each classifier is trained to recognize one of
the failure modes (extracted subgroups) from the Mapper
graph. We demonstrate performance of FiFa for model
correction using Linear SVM, Logistic Regression, and
Naive Bayes classifiers.

2) Evaluate bias: A classifier trained on a failure mode
may well capture larger parts of test data than expected.
As long as the space identified as a failure mode has
consistent bias, it remains useful for model correction: by
evaluating the bias in data captured by a failure mode
classifier we can calibrate the correction layer.

3) Adjust model: The actual correction on new data is
a type of ensemble model, and has flexibility on how to
reconcile the bias prediction with the original model pre-
diction – or even how to reconcile several bias predictions
with each other. For the CNN example in this paper we
choose to override the CNN prediction with the observed
ground truth in the failure mode from the training data
used to create the classifier. For regression tasks, such
as the EAF energy model case, we used the average of
the failure mode training group as an offset, motivated by
Type S error, to subtract from the model prediction.

D. Qualitative: Model inspection
Identifying distinct failure modes and giving examples

of these is valuable for model inspection and debugging.
Statistical methods, such as Kolmogorov-Smirnov testing,
can provide measures of how influential any one feature
is in distinguishing one group from another and can give
notions of what characterizes any one failure mode from
other parts of input space. With examples and distinguish-
ing features in hand, we can go back to the original model
design and evaluate how to adapt the model to handle the
failure modes better.

Much of the work in interpretability for machine learn-
ing provides tools to inspect examples, and for providing
a model explanation for a specific example. These work
well in conjunction with FiFa to find explanations for the
identified failure modes.

IV. Experiments
A. CNN model on MNIST data

1) Protocol: We created a CNN model with a topology
shown in Figure 1. The network topology and parameters
was chosen arbitrarily with the only condition that it
performs well on the original MNIST test data set. The
activation functions was ’Softmax’ for the classification
layer and ’ReLU’ for all other layers. The optimizer was
Adadelta with learning rate lr = 1.0, ρ = 0.95, and ε =
1e−7 (Zeiler, 2012). We trained the model on 60,000 clean
MNIST training images through 12 epochs and tested
it on 10,000 clean MNIST images. The accuracy on the
test-set of 10,000 clean MNIST images was 99.05%. We
created 10,000 corrupt MNIST images using 25% random
binary flips on the clean test images[source for code in

3

C(k)

Conv2D Conv2D Max
pooling

Dropout
25% Flatten

Dropout
50%

Dense Dense

26x26x32 24x24x64 12x12x64 12x12x64

9216

128 128

10

28x28x1

Soft-
max

Fig. 1. The topology for the CNN model. The numbers display the
dimension of each layer in the model. The abbreviations, such as
Conv2D, describes the specific transformations performed between
layers in the model. The activation functions for the classification
layer was ’Softmax’ and for the other layers ’ReLU’. The optimizer
used was ’Adadelta’ (Zeiler, 2012).

G50
G30

G47G40
M3

M2

M4

M5

M6

M10

M11

M12

Fig. 2. Left: the Mapper graph for the CNN on MNIST dataset
colored with probability of predicting the ground truth digit. The
colorbar is for interpreting the values of the coloring. The circled
nodes and edges are the groups Group30, Group40, Group47, and
Group50. The 5-fold Mapper graphs are shown in the Supplement.
Right: The Mapper graph for the EAF energy model dataset colored
with ∆T . The color bar is for interpreting the ∆T values. The 8
manually picked groups are circled with names.

supplement]. The accuracy on the corrupt MNIST images
was 40.45%.

To create the Mapper graph we used the following:
• Filters: Principal Component 1, probability of Pre-

dicted digit, probability of Ground truth digit, and
Ground truth digit. Our measure of predictive error
is the probability of Ground truth digit.

• Metric: Variance Normalized Euclidean
• Variables: 9472 network activations: all activations

after the Dropout layer that finishes the convolutional
part in the network and before the softmax layer that
provides the final predictions.

• Instances: In addition to the test set with 10,000
images, we created 10,000 corrupted images. We per-
formed 5-fold cross-validation for calibration on this
test set of 20,000 images.

We purposely omitted the activations from the Dense-
10 layer as input variables because of the direct reference
to the probabilities for both the ground truth digit and
the predicted digit.

The following variables were used in filter functions or
in the subsequent analysis, but were not used to create the
FiFa model:

• 10 activations from the Dense-10 layer, which con-
sists of the probabilities for each digit, 0-9.

●●●●●●●● ●●●●●●●●●

●●
●●
●
●

●●
●
●●●
●
●
●
●

●

●●●●●●●●●●

●

●●●●●●●● ●●●●●● ●●●●●

●

●●

●●●●●●●●●●●● ●●●●●●●●●

●
●●●
●
●●●●●●●

●●●●●●●●●●●
●●

●●●●●●●●●●● ●●●●●●●● ●●●●●
●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●●

●

●

●

●

●

●

●●●
●

●

●

●

●
●

●
●

●

●●
●

●●●

●

●●●

●

●

●

●●●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●

●
●
●
●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

30
40

47

0 1 2 3 4 5 6 7 8 9

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Ground Truth

S
of

tm
ax

Fig. 3. The failure modes for a ground truth of 5. We see the
distributions of predictions for the three failure modes: only group 30
attaches any significant likelihood to the digit 5 at all, while all three
favor 8. For group 40, the digits 2 and 3 are also commonly suggested,
while this happens somewhat more rarely in groups 30 and 47.

• 784 pixel values representing the flattened MNIST
image of size 28x28x1.

• 6 variables: prediction by the CNN model, ground
truth digit, corrupt or original data (binary), correct
or incorrect prediction(binary), probability of the Pre-
dicted digit (highest value of the Dense-10 layer), and
probability of ground truth digit.

Hence, the total number of variables in our analysis were
10272.

To extract failure modes from the FiFa model we used
a supervised community detection method to find groups
of approximately constant prediction error.

From partitioned groups, we retain as failure modes
those groups that have at least 15 data points and have
less than 99.05% correct predictions, which is the accuracy
of the CNN model on the original MNIST test data.

We evaluated the usefulness of the extracted failure
modes by training classifiers on detecting failure mode
membership for activation sets from the network. These
were evaluted on a set of 10,000 new corrupted images
using the same type of 25% binary flips on the origi-
nal MNIST test datasets. Between Linear SVM, Logistic
Regression and Naive Bayes, the resulting performance
was similar between all three options. For the two linear
types, less than 1% of clean images were picked up by the
classifiers, and prediction accuracy on corrupted images
increased by almost 20%pt.

Focusing on failure to detect the digit 5, we identified
three important failure modes. Their prediction distribu-
tions can be seen in Figure 3. For a qualitative analysis, we
inspected saliency maps (Simonyan et al, 2013) for highly
influential activations for our failure modes. These saliency
maps, when investigating these three failure modes include
on the one hand several activations that seem to code
for 5-ishness, and on the other hand several activations
that seem to pick up on noise closing up loops in the
shape of the 5s. We would refer to our figshare repository
for illustrations of these saliency maps: https://doi.org/10.
6084/m9.figshare.6476426 .

4

B. EAF energy model
1) Protocol: For the EAF energy model case, we used

the following parameter to create the Mapper graph:
• Filters: Principal Component 1, Principal Compo-

nent 2, ∆T , and Tm.
• Metric: Variance Normalized Euclidean
• Variables: 77 variables, logged before the tempera-

ture measurement.
• Instances: We used 5163 data points that was ran-

domly shuffled and split into 80/20 training and test
data. The 4130 training data points was used to create
the Mapper graph as well as the piecewise linear
models. The remaining 1033 test data points was used
to evaluate the piecewise linear models.

The use of ∆T as one of the lenses guarantees that
Mapper separates regions of high ∆T from regions of
low ∆T while the use of pre-measurement data makes
the model usable for online corrections. An additional 24
variables, logged after the temperature measurement, was
used to analyze the network. Hence, a total of 101 variables
were used.

Automated extraction of failure modes failed for the
EAF data. Instead, we extracted subgroups manually
using the following heuristics:

1) An average ∆T of above 50◦C or below -50◦C.
2) Nodes have consistently large |∆T |, which distin-

guished the group from the neighboring clusters.
3) As large group as possible while still maintaining

heuristic 1 and 2
Using the 4130 training data points, we trained classi-

fiers to recognize failure mode membership.
To illustrate a quantitative application, we added a

correction layer, adjusting the temperature prediction by
the mean ∆T from the training set. Limiting our attention
to the 3 most extreme of the 8 identified groups, the
adjustment changed the prediction error on the test set
by:

• M4: −219◦C → 13◦C (std.dev. 56.1)
• M10: 173◦C → 44◦C (std.dev. 49.2)
• M11: −242◦C → −51◦C (std.dev. 42.6)
For a qualitative evaluation, we identified high impact

variables and were able to identify as especially impactful
– for the group we labelled M3 two different identifiers of
the raw material type in the furnace charge and one of
the measures of expected energy consumption: having the
steel type out of balance led to a large underestimation
of energy consumption, which produced too low an energy
estimate.

V. Summary
The Fibres of Failure (FiFa) approach identifies distinct

failure modes by using the topological method Mapper for
robust grouping of observations with enforced separations
parametrized by an error measure on the data.

When applying the method to noisy digits displayed
to a CNN model trained on noise-free MNIST digits we

could see an improvement by almost 20%pt on accuracy on
corrupted image data, and when applying the method to
temperature prediction in Electric Arc Furnaces for steel
smelting we could improve temperature prediction with up
to approximately 200◦C.

Furthermore, in both the CNN model and the temper-
ature prediction cases, analyzing features that distinguish
the failure modes from non-failing cases led to specific
observations of factors contributing to the failures: loop-
closing noise for noisy MNIST task and material composi-
tions leading to optimistic energy use predictions for the
furnace. Used in this way, the failure modes extracted by
FiFa acts as a guide for where to focus inspection work to
best leverage understanding for the data.

A. Acknowledgements
This project is in collaboration with Outokumpu Stain-

less AB and with Ayasdi Inc. We would like to thank both
companies and our contacts: Jesper Janis, Gunnar Lind-
strand, Pär Ljungqvist and Devi Ramanan for support,
access to data and software, and fruitful discussions.

References
Carlsson G (2009) Topology and data. American Mathe-

matical Society 46(2):255–308
Simonyan K, Vedaldi A, Zisserman A (2013) Deep in-

side convolutional networks: Visualising image clas-
sification models and saliency maps. arXiv preprint
arXiv:13126034

Singh G, Mémoli F, Carlsson G (2007) Topological Meth-
ods for the Analysis of High Dimensional Data Sets and
3d Object Recognition. In: SPBG, pp 91–100, URL http:
//comptop.stanford.edu/preprints/mapperPBG.pdf

Zeiler MD (2012) Adadelta: An adaptive learning rate
method. arXiV

Approximating Global Optimum for
Probabilistic Truth Discovery ?

Shi Li, Jinhui Xu, and Minwei Ye

State University of New York at Buffalo
{shil,jinhui,minweiye}@buffalo.edu

Overview

Truth discovery has received a great deal of attention in recent years in databas-
es, data crowdsourcing, machine learning and data mining. It emerges from var-
ious practical scenarios such as copying detection, data fusion and conflicting
information resolving on the web. In a typical scenario, the unknown truth for
one or multiple objects can be viewed as a vector in a high-dimension space.
The information about the truth vector may come from multiple sources. Those
sources may be inaccurate, conflicting or even biased from the beginning if they
come from subjective evaluation. Our goal is to infer the truth vector from these
noisy information.

A naive method for this problem is to take the average of all the vectors from
sources as the the ground truth (for coordinates correspondent to categorical
data, take the majority vote). However, this approach, which inherently treats all
sources as equally important, is vulnerable to unreliable and malicious sources.
Such sources can provide information that pulls the average away from the truth.
A more robust type of approaches is to give weights to sources to indicate their
reliability and use the weighted average or weighted majority as the ground truth.
However, since the weights are often unknown, the goal of finding the ground
truth is coupled with the task of reliability estimation. This type of approaches
is referred as a truth discovery approach. Among all, there are two competing
and sometimes complementary frameworks that are widely accepted and used
for different data types.

Weight-based Truth Discovery In this framework, both the truth and
the weights are treated as variables. An objective function is defined on these
variables. A typical setting might be like this [4]:

Given {pi}ni=1 ⊂ Rd, find x ∈ Rd, {wi}ni=1 ⊂ Rd

to minimize

n∑

i=1

wi‖x− pi‖2 s.t.

n∑

i=1

e−wi = 1

The problem is usually solved by alternating minimization algorithm. In each
iteration, the algorithm fixes one set of variables (either the truth variables, or

? A preliminary version of this work has appeared in the 24th International Computing
and Combinatorics Conference (COCOON’18)

2 S. Li, J. Xu and M. Ye

the weight variables) and optimizes the other. This procedure continues until
a stable solution is reached. Many existing methods follow this framework and
justify themselves by experimenting with different types of real-world datasets.
However, none of these methods provides any theoretical guarantee regarding the
quality of solution. Recently, Ding et al. [2] gave the first algorithm that achieves
a theoretical guarantee (i.e., a (1+ε)-approximation) for the model above. Later,
Huang et al. [6] further improved the running time to near quadratic.

Probabilistic Truth Discovery Probabilistic models lie in a different
category of models for truth discovery. They were also studied extensively in the
literature. Instead of giving weights to indicate the reliability of all sources, these
models assume that the information for each source is generated independently
from some distribution that depends on the truth and the reliability of the
source. Then the goal under these models is to find the truth that maximizes the
likelihood of the generated information from all sources. The probabilistic models
have been shown to outperform the weight-based methods on numerical data.
They also prevail other models in the case where sources come from subjective
evaluation. For the quality of the optimization, [5] gave an iterative algorithm
with guaranteed fast convergence to a local optimum.

Model and result

We propose a probabilistic truth discovery model, reformulate it as an optimiza-
tion problem and give a polynomial-time approximation scheme to solve it.

We first set the stage for the problem. The unknown truth can be repre-
sented as a d dimensional vector p∗, as justified in [4]. There are n sources,
and the observation/evaluation made by the i-th source is denoted as pi which
also lies in the d dimensional space Rd. In our model, we assume that each
observation/evaluation is a random variable following a multi-variate Gaussian
distribution centered at the truth p∗ with covariance σ2

i Id.
1 Each unknown pa-

rameter σi ≥ 0 represents the reliability of the source; the smaller the variance,
the more reliable the source is.

We formulate the problem as finding the (p∗, σ = (σi)i∈[n]) that maximizes
the likelihood of the random procedure generating {pi}ni=1.We impose a hyper-
parameter σ0 > 0 and require σi ≥ σ0 for every i ∈ [n]. It is naturally interpreted
as an upper bound of the reliability of all sources.

Given the set of observation P = {pi}ni=1 ⊂ Rd under this probabilistic model
and a hyper-parameter σ0, we need to find a point x that maximizes the following

1 For categorical data, the Gaussian distribution may cause fractional answers, which
can be viewed as a probability distribution over possible truths. In practice, variance
for different coordinates of the truth vector may be different and there might be
some non-zero covariance between different coordinates; however, up to a linear
transformation, we may assume the covariance matrix is σ2

i Id.

Approximating Global Optimum for Probabilistic Truth Discovery 3

likelihood function:
n∏

i=1

N (pi | x, σ2
i Id) =

n∏

i=1

(
1√

2πσi

)d
exp

[
−‖pi − x‖

2

2σ2
i

]
.

Taking negative logarithm, we obtain the following optimization problem:

min
x∈Rd,σ

{
nd

2
ln (2π) +

n∑

i=1

(
d lnσi +

‖pi − x‖2
2σ2

i

)}
, s.t. σi ≥ σ0,∀i ∈ [n].

(1)

After some scaling and simplification, the problem reduces to:

min
x∈Rd

n∑

i=1

ftruth(‖x− pi‖) where ftruth(`) =

{
`2 0 ≤ ` < 1

1 + ln `2 ` ≥ 1
. (2)

which is a special case of a more general class of optimization problems as follows,

Given {p1, p2, · · · , pn} ⊂ Rd, find x ∈ Rd to minimize
n∑

i=1

f(‖x− pi‖),

where f is a function satisfying the following three properties.

Property 1. (Regularity) f is a continuous, non-negative, monotonically in-
creasing function.

Property 2. (Sub-proportionality)2 ∃α ≥ 1 : f(kx) ≤ kαf(x) for any k ≥ 1,x ≥
0. We say α is the proportional degree of f if it is the smallest α satisfies such
property.

Property 3. The function f can be computed in polynomial time with respect to
the size of the input. The inverse of f , defined as f−1(y) = supx{x : f(x) = y},
should also be able to calculate in polynomial time w.r.t to the size of x when
y ≤ 2f(x).

This general problem encloses as special cases the classic 1-median and 1-
mean problems, and the more general problem of minimizing p-th power of
distances. Moreover, by considering the corresponding functions with an upper-
threshold, i.e, f(`) = min{`, B}, f(`) = min{`2, B} and f(`) = min{`p, B}, one
can capture the outlier versions of all these problems.

We give a sampling-based method that solves the above optimization problem
up to a factor of 1 + ε for any ε > 0 in quadratic running time. Thus, it not only
solves our truth discovery problem but also gives a unified approach to solve all
the above problems under this framework.

Theorem 1. Let 0 < ε ≤ 1. Let P be a set of n points in Rd and G(x) =∑
p∈P ftruth(‖x− p‖). A (1 + ε)-approximate solution can be obtained in time

O(2(1/ε)
O(1)

d+n2d). In addition, if we replace ftruth by any other functions that
satisfy property 1,2,3, the same result applies.

2 Also referred as polynomial growing function or Log-Log Lipschitz function in liter-
ature.

4 S. Li, J. Xu and M. Ye

Our Techniques

One property that we do not impose on the function f is convexity. Without
the convexity property, iterative approaches such as gradient descent and EM
do not guarantee the global optimality. General coreset technique which reduces
the size of the problem will not work, either. The dimensionality is not reduced
by those techniques so that the problem is still hard even for the coreset.

Instead of using methods in continuous optimization or general sampling
technique, our algorithm is based on the elegant method Badoiu, Har-Peled
and Indyk developed to give fast algorithms for many clustering problems [1, 3].
Roughly speaking, [1] showed that a small set of sample points X can guarantee
that the affine subspace span(X) contains a (1 + ε) approximate solution for
these clustering problems. Therefore both the size and the dimensionality can
be reduced. The approximate solution is then obtained by grid search inside
span(X).

Directly applying [1] does not work for general cost function. The key issue is
to settle the parameter (call it L) that determines how close the affine subspace
should be to the optimal point. This parameter also determines the grid size
in the final grid search step. L can’t be too large, otherwise the final result of
the grid search won’t be close enough to the optimal and therefore won’t be
an approximate solution. It can’t be too small either: smaller L implies more
sample points and the size of the grid might be exponential with respect to the
input size. We first settled the existence of such L in the general function case.
Then we provided a method to search the value of L.

References

1. M. Bādoiu, S. Har-Peled, and P. Indyk. Approximate clustering via core-sets. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing,
pages 250–257. ACM, 2002.

2. H. Ding, J. Gao, and J. Xu. Finding global optimum for truth discovery: Entropy
based geometric variance. In LIPIcs-Leibniz International Proceedings in Informat-
ics, volume 51. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

3. A. Kumar, Y. Sabharwal, and S. Sen. Linear time algorithms for clustering prob-
lems in any dimensions. In International Colloquium on Automata, Languages, and
Programming, pages 1374–1385. Springer, 2005.

4. Q. Li, Y. Li, J. Gao, B. Zhao, W. Fan, and J. Han. Resolving conflicts in heteroge-
neous data by truth discovery and source reliability estimation. In Proceedings of
the 2014 ACM SIGMOD international conference on Management of data, pages
1187–1198. ACM, 2014.

5. H. Xiao, J. Gao, Z. Wang, S. Wang, L. Su, and H. Liu. A truth discovery approach
with theoretical guarantee. In Proceedings of the 22nd ACM SIGKDD Internation-
al Conference on Knowledge Discovery and Data Mining, pages 1925–1934. ACM,
2016.

6. H. D. Ziyun Huang and J. Xu. Faster algorithm for truth discovery via range cover.
In Proceedings of Algorithms and Data Structures Symposium (WADS 2017), pages
461– 472, 2017.

Time Window Fréchet and Metric-Based Edit Distance for
Passively Collected Trajectories

Jiaxin Ding
Stony Brook University

Jie Gao
Stony Brook University

Steven Skiena
Stony Brook University

1 INTRODUCTION
Advances in localization techniques and wireless technologies have
allowed for the collection of a huge volume of trajectories of pedes-
trians and vehicles. The rich knowledge in humanmobility data pro-
vides great opportunities to mine interesting patterns, that can be
useful for numerous applications, including but not limited to traffic
management, urban planning, and the scheduling of autonomous
vehicles. In many scenarios, mobile users’ trajectories are collected
passively, i.e., inferred from connection traces with WiFi access
points, cellular towers, or through transactions of credit cards or
transit cards in public transportation systems. These records con-
sist of users’ locations and the corresponding time stamps, so the
sequence of records produces a good approximation of mobile user
trajectory. Prior studies of trajectories collected passively include
the study of human mobility traces of over 100, 000 mobile phone
users [26] and the study of about 95, 000 users in a large university
campus [46].

Trajectories collected through passive sensing are unique in
many ways. First the collected trajectories respect the density of
wireless checkpoints (WiFi, cellular towers, etc) and have much
lower resolution than GPS traces. Missing data is the norm, for
example, in regions without WiFi access points. It is an interesting
problem to properly handle the time-stamp information. First, time
stamp labels cannot be ignored but it is preferred to allow flexibility
in handling time stamps. Accurate spatial temporal information
(i.e., the location of a person at a particular time) can be considered
sensitive and private. With long term trajectory data, frequent lo-
cations [26, 40], co-locations [22], and specific patterns [20, 36] of
users can be easily learned, which can be used to identify a user,
breach their social ties and locate their whereabouts at any time.
Thus location/time-stamp data in published data sets is often in-
tentionally perturbed or generalized [38]. Further, although human
mobility shows great regularity and repetition, people have a fair
amount of flexibility in daily routines. For example, it is common
that a user goes to work every day but the time of leaving home
may fluctuate.

With passively collected trajectories, one can discover inter-
esting mobility patterns by clustering trajectories into groups of
similar ones, for which we need a measure of similarity. There
has been much work on distances to measure similarity between
curves. For example, Hausdorff distance measures the maximum
distance of all points on one curve to their nearest point on the
other curves. Fréchet distance measures the minimum of maximum
length between all possible pairing/coupling of points on the two
curves.

These distances for curves when applied to data mining in pas-
sively collected human trajectory data are not ideal. First, all these
distances focus on the shape of the curves but ignore the time stamp
information. But time dimension is important for understanding

group mobility and traffic. Two individuals, traveling along the
same route but at totally different time frames shall not be consid-
ered similar. The duration spent at a location is a crucial attribute
for important places for a user and the patten of visiting a sequence
of locations is useful to infer the semantics of the trip.

In this paper we develop alternative similarity measures. We
explored in two directions.

• Time-window Fréchet distance. In the first variant, we intro-
duce time-window Fréchet distance, where only pairs of
points within a time window δ can be coupled. Further, we
show an algorithm to compute the time window Fréchet
distance with running time related to the complexity of the
input curves.

• Metric-based edit distance. In the second variant, we take uni-
form sampling along the time dimension and use a combina-
torial representation as a string of cells/towers/APs visited
by the user and the edit distance – the minimum number
of changes (insertions or deletions) to turn one sequence to
another. We consider a variant of edit distance by incorpo-
rating the underlying metric in the calculation of the edit
distance. Specifically, the cost of inserting or deleting a sym-
bol is based on the change of the metric distance before and
after the operation. This will be able to handle the issue of
missing data. We also discuss algorithms for computing the
metric based edit distance.

Next, we talk about clustering motion trajectories into meaning-
ful clusters. We use the notion of k-gather clustering [3], which is
to minimize the radius of any cluster, such that each trajectory is in
a cluster of at least k traces. The requirement of k is needed to de-
fine group motion and often adopted to define popular/meaningful
traffic patterns. There is also additional benefit of k-anonymity [42]
if only a summary of each cluster is reported/shared with the public
– one cannot tell a specific user from a group of k trajectories. It is
known that k-gathering for points in a metric space is NP-hard and
there is a 2-approximation algorithm [3]. We extend the hardness
proof to the case of trajectories under edit distance, metric based
edit distance and the Jaccard distance.

Related work see Appendix D.

2 TIME-WINDOWMETRICS
2.1 Fréchet Distance
The Fréchet distance is one of the most popular distance measure
of two curves in space. It can be intuitively understood as a man
traversing a finite curved path while walking his dog on a leash,
with the dog traversing a separate path. Both the man and the
dog need to walk forward but can take any speed at any time. The
Fréchet distance is the minimum length of the leash needed to finish
the walk. An approximation and simpler version of the Fréchet

ε

(a) Two curves (b) Free Space

Figure 1: Given ε , the white area in the left figure denotes the free
space. The horizontal axis corresponds to the red curve and the ver-
tical axis corresponds to the blue curve.

distance between polygonal curves is the discrete Fréchet distance,
which considers only positions of the leash whose endpoints are
located at vertices of two polygonal curves.

A curve inR2 is a continuousmap [0, 1] → R2. A re-parameterization
of [0, 1] is a continuous, non-decreasing, surjection [0, 1] → [0, 1].

Definition 2.1 (Fréchet distance). Let A,B be two given curves in
R2, and α , β be re-parameterizations of A,B. The Fréchet distance
δF (A,B) is defined as

δF (A,B) = inf
α,β

max
s ∈[0,1]

{d(A(α(s)),B(β(s)))} ,

where d(·, ·) is the distance between two points.
It is often easier to understand the Fréchet distance between

polygonal curves by the free space diagram. A polygonal curve A
is a continuous map [0,n] → R2, A(i) = ai ∈ R

2 is the ith vertex.
The map from interval [i, i + 1] to the ith line segment A(i)A(i + 1)
of the curve is affine,

A(s) = (1 + i − s)ai + (s − i)ai+1, s ∈ [i, i + 1].
We also represent A as a sequence of its vertices [a0,a1, · · · ,an].

Definition 2.2 (Free space [4]). Free space between two polygonal
curves A and B for a given distance ε is defined as

D≤ε (A,B) =

{
(s, s ′) ∈ [0,n] × [0,m]

����d(A(s),B(s ′)) ≤ ε

}
.

The free space is a two-dimensional region in the parameter
space consisting of all points on the two curves with distance at
most ε . A free space diagram is the free space along with vertical
lines corresponding to vertices inA and horizontal lines correspond-
ing to vertices in B, as shown in Figure 1. These vertical and horizon-
tal lines divide the free space into cells. A cell Ci j = [i, i+1]×[j, j+1]
corresponds to all possible pairing between line segmentA(i)A(i+1)
and B(j)B(j + 1). The Fréchet distance between A and B is at most
ε if there is a path that is monotone in both x (horizontal) and y
(vertical) dimension in the free space D≤ε (A,B) from (0, 0) to (n,m).
Given ε , we can decide whether there exists such a path in O(nm)

and we can find the Fréchet distance using parametric search in
O(nm log(nm)) [4].

We can define the discrete Fréchet distance on polygonal curves.
Definition 2.3 (Coupling/Traversal). Given two polygonal curves

represented by a sequence of vertices A = [a0,a1, . . . ,an],B =
[b0,b1, . . . ,bm], we define a coupling β = [c0, c1, . . . , cl] as a se-
quence of pairs of points in A and B, ck = (ck [0], ck [1]), where
ck [0] ∈ A, ck [1] ∈ B, such that

• c0 = (a0,b0), cl = (an ,bm),
• if ck = (ai ,bj), ck+1 ∈ {(ai ,bj+1), (ai+1,bj), (ai+1,bj+1)}.

The distance of a coupling is the maximum distance among the
pairs ck in β : max(ai ,bj)∈β d(ai ,bj). The coupling is sometimes
called traversal in the literature.

Definition 2.4 (The discrete Fréchet distance [23]). The discrete
Fréchet distance between A and B is defined as the minimum of the
maximum widths of all possible couplings of A,B:

δdF (A,B) = min
β

max
(ai ,bj)∈β

d(ai ,bj).

It has been shown in [23] that the discrete Fréchet distance
provides an upper bound for the Fréchet distance and the difference
between these two distances is bounded by the longest edge length
of the polygonal curves. The discrete Fréchet distance is sensitive
to sampling rate of the curve.

2.2 Time-Window Fréchet Distance
In this section, we introduce the time window Fréchet distance
to analyze human mobility trajectories. In the original Fréchet
distance, there are no constraints on the couplings with which we
obtain the Fréchet distance. This loses important information in
the temporal dimension for comparing time-stamped trajectories.

A trajectory is a continuous map from time t ∈ [0, 1] to R2:
[0, 1] → R2. W.l.o.g., we normalize time into the range [0, 1] and
assume all trajectories start at time 0 and end at time 1.

Definition 2.5 (Time window Fréchet distance). Let A,B be two
trajectories, and α , β be the re-parameterization of A,B. The time
window Fréchet distance is defined as

δσt F (A,B) = inf
α,β

max
s ∈[0,1]

{d(A(α(s)),B(β(s)))}

for any s ∈ [0, 1], we have |α(s) − β(s)| < σ , where σ is a parameter
specifying which points on two trajectories can be paired.

Since we add constraints on the original Fréchet distance, a
valid re-parametrization for time window Fréchet distance is a
valid coupling for Fréchet distance. Hence, we have the following
lemma.

Lemma 2.6. (1) δσt F (A,B) ≥ δF (A,B).

(2) δσt F (A,B) ≥ δσ
′

t F (A,B), if σ ≤ σ ′.

Trajectories in the real world settings are often produced by
discrete samples taken by various localization techniques. Without
further information, we assume that the mobile entities move along
the polygonal curves determined by the sample points. In this
section we consider two scenarios:

(1) Constant Speed. A mobile entity travels at constant speed
between two consecutive sample points,

(2) Varying Speed.Amobile entity may travel at varying speed
from a sample point to the next.

Given two trajectories A,B with discrete sample points, A(t0) =
a0,A(t1) = a1, · · · ,A(tn) = an ,B(t

′
0) = b0,B(t ′1) = b1, · · · ,B(t ′m) =

bm , ai ,bj ∈ R2, we first show the difference of the time window
Fréchet distance under constant speed and varying speed conditions
and then present algorithms.

2

σ
A

B

(a) The constraints on free space di-
agram of trajectory A, B under con-
stant speed assumption

A′

B′

(b) The constraints on free space di-
agram of polygonal curve A′, B′ un-
der arbitrary speed assumption

Figure 2: Constraints on the free space diagram for timewin-
dow Fréchet distance given σ .

Constant Speed. If a mobile entity travels at constant speed be-
tween two consecutive sample points, we can run interpolation to
get the location of the mobile entity at time t .

In the free space diagram, we simply use time as axes. Use t to
refer time used for trajectory A and t ′ be time of B. All pairs of
t , t ′ within time window σ , |t − t ′ | ≤ σ , is demonstrated in Figure
2(a), where the horizontal axis is t of A and the vertical axis is t ′
of B. A valid re-parametrization with time window constraints, is
represented as a monotone path within the white area decided by
|t − t ′ | ≤ σ in the free space diagram. Hence, we have the following
lemma.

Lemma 2.7. Given time window σ , δσt F (A,B) ≤ ε iff there is a
monotone path from (0, 0) to (1, 1) within the space decided by |t −
t ′ | ≤ σ in the free space diagram D≤ε (A,B), where t , t ′ are time of
A and B.

Varying Speed. If we allow a mobile entity travel at varying speed
in the direction from a sample point to the next, the problem boils
down to setting constraints only on how sample points of A,B are
paired. The set of sample locations of B, which A(ti) can be paired
with, contains those that are within time interval [ti − σ , ti + σ],
and the first one outside this interval:
{B(t ′j)

��|ti−t ′j | ≤ σ or (t ′j < ti−σ , t
′
j+1 ≥ ti−σ) or (t ′j > ti+σ , t

′
j−1 ≤ ti+σ)}.

(1)

Lemma 2.8. Given time window σ , δσt F (A,B) ≤ ε iff there is a
monotone path from (0, 0) to (n,m) within the union of all valid cells
in D≤ε (A,B).

Analysis can be found in Appendix A.1.
Algorithm and Running Time Analysis. We use the free space
diagram to find our time-window Fréchet distance, where we en-
force all monotone paths to stay within the region defined by the
time window. Now, we focus on analysing the Fréchet distance
under the above two assumptions. We denote by C(n,m,σ) the
number of cells containing space satisfying time window constraint
σ in both above assumptions of constant and varying speeds. To
find all such cells, since points on trajectories are already in chrono-
logical order, we can do a linear scan over trajectories in O(n +

m) + C(n,m,σ). Given ε , we can check whether δσt F (A,B) ≤ ε in
time C(n,m,σ), similar to [12]. With Cole’s parametric search [19]
in [4], the complexity of finding the time window Fréchet distance
is O(C(n,m,σ) logC(n,m,σ)). Since for each sample point on the
trajectories, there is at least one corresponding cell containing the
space satisfying the time window constraints, C(n,m,σ) ≥ n. All
above, the overall complexity is O(C(n,m,σ) logC(n,m,σ)).

Remark 1. We can also apply the time-window constraint on
discrete Fréchet distance and dynamic time warping, as shown in
Appendix A.2.

3 STRING REPRESENTATION AND
METRIC-BASED EDIT DISTANCE

For passively collected trajectories, when a mobile entity get con-
nected to or approximated to a labeled checkpoint, such as cellular
towers, WiFi Access Points, or other stations, the appearance of the
mobile entity is collected. A trajectory is represented as a sequence
of checkpoints visited in order. If we associate each checkpoint
by a unique character, we get a string representation of the mobile
entity’s trajectory. Such trajectories contain rich information and
save tremendous storage compared with trajectories of frequent
GPS sample points.

3.1 Edit Distance and Metric-Based Edit
Distance

With the string representation of a trajectory, a natural metric is the
edit distance. The distance between two stringsA = a1a2 · · ·an and
B = b1b2 · · ·bm is the smallest number of character insertions and
deletions that convert A to B. One can compute the edit distance
by using dynamic programming in time O(nm).

For trajectories, it would make sense to differentiate the inser-
tion of a nearby location versus the insertion of a far away location.
The definition of ‘nearby’ or ‘far-away’ location can be application
dependent. For example, one can examine the Euclidean distance
between two locations. Alternatively, it might be interesting to
define such distance by the functionality (e.g., by the district parti-
tioning in a city, by the type of buildings which a location belongs
to, etc). We assume that this distance is defined by the metric d(·, ·).

Given d , we propose a metric-based edit distance with insertion
and deletion cost as following. Let U be the set of all characters
representing locations. For x ,y, z ∈ U , we define the insertion cost
to insert z between x and y, as the difference of taking the detour
through z rather than going straight:

INS(x ,y, z) = d(x , z) + d(y, z) − d(x ,y). (2)
Similarly, we define the deletion cost to delete z between x and y
symmetrically:

DEL(x ,y, z) = d(x , z) + d(y, z) − d(x ,y) (3)
To define the insertion and deletion cost before the first character

and after the last character of a string, we add character S and T
to the beginning and end of each trajectory string. Here S,T are
dummy nodes with distanceM = ∞ to all other locations. If z stays
on the line segment between x , z, INS(x ,y, z) = 0, DEL(x ,y, z) = 0.
This makes sense as the shape of the trajectory does not change
and the insertion/deletion of y properly handles possible missing

3

data in this case. Besides, the cost of inserting or deleting a sequnce
of y between x and z has the same cost with inserting or deleting
one y between x and z. In this case, redundant data is also handled.

a c

b d

a b

c
d

e

(a) (b)

Figure 3: (a) Themetric-based edit distance between trajectory abc and adc
ismin{ |ab | + 2 |bd | + |dc | − |ad | − |bc |, |ab | + |bc | + |ad | + |dc | − 2 |ac | }. The
former is the cost of inserting d first and then deleting b , while the latter is
the cost of deleting b first and then inserting d . (b) The cost of deleting cde
between a and b is always |ac | + |cd | + |de | + |eb | − |ab | for all the orders to
delete cde .

Definition 3.1 (Metric-based edit distance). Given two trajecto-
ries with string representation, the metric-based edit distance is the
minimum cost to convert one trajectory string to the other with ar-
bitrary order of insertions and deletions, where the cost of insertion
and deletion is defined by function INS and DEL.

In some edit distance definitions, one can substitute one char-
acter by another. Here we use insertion and deletion to simulate a
substitution operation. An example of metric-based edit distance is
shown in Figure 3(a).

Lemma 3.2. Given two characters in a trajectory string, the total
cost of deleting all characters between these two characters is not
affected by the order of performing these deletions. Given two neigh-
boring characters in a trajectory string, the total cost of inserting a
sequence of characters between these two characters is also not affected
by the order.

Proof see Appendix B.1. An example is in Figure 3(b).

Theorem 3.3. The metric-based edit distance is a metric.

Proof see Appendix B.2.

3.2 Algorithm for Metric-based Edit Distance
The insertion and deletion cost of metric-based edit distance is
decided by the neighbors. This provides us a cost highly related to
the underlying distance metric of two symbols. On the other hand, it
also increases the complexity of computing the distance as we need
to consider different orders of insertion and deletion of symbols as
these may affect the cost in later insertion and deletion operations.
The good thing is that we can still run dynamic programming
algorithm with running timeO(n3m3(n +m)) with details provided
in Appendix B.3.

We can simplify the computation if we require all insertions be
done before any deletions when converting A to B. In this way
the running time can be made to be in O(nm). But the downside
is that the distance no longer satisfies the triangle inequality. See
Appendix B.4.

4 k-GATHER CLUSTERING
A common practice to process trajectories is to perform clustering.
That is, trajectories that are similar to each other are grouped in one
cluster. Tight and dense clusters of trajectories naturally correspond
to meaningful features such as group motion, convoy, etc. A proper

notion for this purpose is the k-gather problem, which requires
each cluster to have at least k trajectories.

Definition 4.1 (k-gather problem[3]). The k-gather problem is to
cluster n points in a metric space into a set of clusters, such that
each cluster has one point as the center and at least k points. The
objective is to minimize the maximum radius among the clusters,
where the radius is the distance from a point in a cluster to the
center of the cluster.

The k-gather problem on a general metric distance is NP-hard
to compute when k > 6 [3]. We show that for our specific metric
distances between trajectories the problem remains hard. Our gad-
gets construction was motivated by the original proof [3] and need
to be carefully created to fit the trajectory setting.

Theorem 4.2. The k-gather problem of trajectories on edit distance
and metric-based edit distance is NP-hard, for k > 13.

The reduction is from 3SAT. For the full proof see Appendix C.1.
We also prove the hardness of k-gather on Jaccard distance in

Appendix C.2. For completeness, we provide a 2-approximation
algorithm for the k-gather problem on these metrics based on the
work [3] in Appendix C.3.

4

A New Cost Function for Hierarchical Cluster Trees

Dingkang Wang Yusu Wang

October 15, 2018

1 Introduction

Clustering has been one of the most important and popular data analysis methods in the modern
data era, with numerous clustering algorithms proposed in the literature [1]. Theoretical studies
on clustering have so far been focused mostly on the �at clustering algorithms, e.g, [2, 3, 7, 8, 9].
However, there are many scenarios where it is more desirable to perform hierarchical clustering

(HC), which recursively partitions data into a hierarchical collection of clusters. Hierarchical
clustering can provide a more thorough view of the cluster structure behind input data across
all levels of granularity simultaneously.

Most hierarchical clustering algorithms used in practice are developed in a procedure manner :
For example, the family of agglomerative methods build a HC-tree bottom-up by starting with all
data points in individual clusters, and then repeatedly merging them to form bigger clusters at
coarser levels. The family of divisive methods instead partition the data in a top-down manner,
starting with a single cluster, and then recursively dividing it into smaller clusters. While many
of these algorithms work well in di�erent practical situations, it is in general not clear what the
output HC-tree aims to optimize. This lack of optimization understanding of the HC-tree also
makes it hard to decide which hierarchical clustering algorithm one should use given a speci�c
type of input data.

This disadvantage was recently studied by Dasgupta in [6]. Speci�cally, given a similar-
ity graph G, he proposed an intuitive cost function for any HC-tree, and de�ned an optimal
HC-tree for G to be one that minimizes this cost. Dasgupta showed that the optimal tree
under this objective function has many nice properties and is indeed desirable. Furthermore,
while it is NP-hard to �nd the optimal tree, he showed that a simple heuristic using an αn-
approximation of the sparsest graph cut will lead to an algorithm computing a HC-tree whose
cost is an O(log3/2 n)-approximation of the optimal cost. The approximation factor has since
been improved to O(

√
log n) in several subsequent work [4, 5, 10].

Our work. For a �xed graph G, the value of Dasgupta's cost function can be used to di�eren-
tiate �better� HC-trees (with smaller cost) from �worse� ones (with larger cost), and the HC-tree
with the smallest cost is optimal. However, we observe that this cost function, in its current
form, does not indicate whether an input graph has a strong hierarchical structure or not, or
whether one graph has �more� hierarchical structure than another graph.

We propose a new cost function to address this issue and study its properties and algorithms.
In particular, by reformulating Dasgupta's cost function, we observe that for a �xed graph,
there exists a base-cost which re�ects the minimum cost one can hope to achieve. Based on this
observation, we develop a new cost ρG(T) to evaluate how well a HC-tree T represents an input
graph G. An optimal HC-tree for G is the one minimizing ρG(T). The new cost function has
several interesting properties:

1

(i) For any graph G, a tree T minimizes ρG(T) for a �xed graph G if and only if it minimizes
Dasgupta's cost function. Furthermore, hardness results and the existing approximation
algorithm developed in [4] still apply to our cost function.

(ii) For any positively weighted graph G with n vertices, the optimal cost ρ∗G := minTρG(T)
is bounded with ρ∗G ∈ [1, n − 2]. The optimal cost ρ∗G intuitively indicates how much
HC-structure the graph G has.

(iii) The new formulation enables us to develop an O(n4 log n)-time algorithm to test whether
an input graph G has a perfect HC-structure (i.e, ρ∗G = 1) or not, as well as computing an
optimal tree if ρ∗G = 1. If an input graph G is what we call the δ-perturbation of a graph
G∗ with a perfect HC-structure, then in O(n3) time we can compute a HC-tree T whose
cost is a (δ2 + 1)-approximation of the optimal one.

Finally, we study the behavior of our cost function for a random graph G generated from
an edge probability matrix P. Under mild conditions on P, we show that the optimal cost ρ∗G
concentrates on a certain value.

All missing proofs can be found in the full paper attached.

2 A New Cost Function for HC-trees and Properties

Our input is a set of n data points V = {v1, . . . , vn} as well as their pairwise similarity, represented
as a n×n weight matrix W with wij =W [i][j] representing the similarity between points vi and
vj .

Given a set of data points V = {v1, . . . , vn}, a hierarchical clustering tree (HC-tree) is a
rooted tree T = (VT , ET) whose leaf set equals V . We also say that T is a HC-tree spanning V .
Given any tree node u ∈ VT , T [u] represents the subtree rooted at u, and leaves(T [u]) denotes the
set of leaves contained in the subtree T [u]. Given any two points vi, vj ∈ V , we use LCAT (i, j)
to represent the lowest common ancestor of leafs vi and vj in T . The following cost function to
evaluate a HC-tree T w.r.t. a similarity graph G was introduced in [6]:

costG(T) =
∑

{i,j}∈E
wij |leaves(T [LCA(i, j)])|.

An optimal HC-tree T ∗ is de�ned as one that minimizing costG(T). Intuitively, to minimize the
cost, pairs of nodes with high similarity should be merged (into a single cluster) earlier.

To introduce our new cost function, it is more convenient to take the matrix view where the
weight wij is de�ned for all pairs of nodes vi and vj . First, a triplet {i, j, k} means three distinct
indices i 6= j 6= k ∈ [1, n]. We say that relation {i, j|k} holds in T , if the lowest common ancestor
LCA(i, j) of vi and vj is a proper descendant of LCA(i, j, k); relation{i|j|k} holds in T , if they
are merged at the same time.

De�nition 1. Given any triplet {i, j, k} of [1, n], the cost of this triplet (induced by T) is

triCT,G(i, j, k) = wik+wjk if relation {i, j|k} holds (similarly for other two symmetric relations),

and = wij + wjk + wik if relation {i|j|k} holds. The total-cost of tree T w.r.t. G is

totalCG(T) =
∑

i 6=j 6=k∈[1,n]
triCT (i, j, k).

The following claim shows the relation between totalCG(T) and costG(T).

Claim 1. totalCG(T) =
∑

(i,j)∈E wij(|leaves(T [LCA(i, j)])| − 2) = costG(T)− 2
∑

(i,j)∈E wij .

2

De�nition 2. Given a n-node graph G associated with similarity matrix W , for any distinct

triplet {i, j, k} ⊂ [1, n], de�ne its min-triplet cost to be

minTriCG(i, j, k) = min{wij + wik, wij + wjk, wik + wjk}.

The base-cost of similarity graph G is

baseC(G) =
∑

i 6=j 6=k∈[1,n]
minTriCG(i, j, k).

To di�erentiate from Dasgupta's cost function, we call our new cost function the ratio-cost.

De�nition 3 (Ratio-cost function). Given a similarity graph G and a HC-tree T , the ratio-cost
of T w.r.t. G is de�ned as

ρG(T) =
totalCG(T)

baseC(G)
.

The optimal tree for G is a tree T ∗ such that ρG(T
∗) = minT ρG(T); and its ratio-cost ρG(T

∗)
is called the optimal ratio-cost ρ∗G.

Graphs with perfect HC-structure. Consider any triplet {i, j, k}, and assume w.l.o.g that
wij is the largest among the three pairwise similarities. If there exists a �perfect� HC-tree T , then
it should �rst merge vi and vj as before merging them with vk. We say that this relation {i, j|k}
(and the tree T) is consistent with (similarties of) this triplet. If there is a HC-tree T consistent
with relations of all triplets, then ρ∗G = 1. We say this graph G has a perfect HC-structure.

While Dasgupta's cost function can be arbitrarily large (up to O(n3), it turns out that the
optimal cost is always tightly bounded.

Theorem 1. (i) Given a similarity graph G = (V,E,w) with w being symmetric, having non-

negative entries, we have that ρ∗G ∈ [1, n− 2] where n = |V | ≥ 3.
(ii) For a connected unweighted graph G = (V,E) with n = |V | and m = |E|, we have that

ρ∗G ∈ [1, n
2−2n

2m−n].

3 Algorithms

While in general, it remains open how to approximate ρ∗G (as well as costG(T
∗)) to a factor better

than
√
log n, we now show that we can check whether a graph has perfect HC-structure or not,

and compute an optimal tree if it has, in polynomial time. We also provide a polynomial-time
approximation algorithm for graphs with near-perfect HC-structures.

The high level framework of our recursive algorithm BuildPerfectTree(Ĝ) is given below and
output a HC-tree T̂ spans a subset of vertices from V̂ = V (Ĝ). ĜA (resp. ĜB) in the algorithm
denotes the subgraph of Ĝ spanned by vertices in A ⊆ V̂ (resp. in B ⊆ V̂). It can be proven
that the output tree T̂ spans all vertices V (Ĝ), if and only if Ĝ has a perfect HC-structure (in
which case T̂ will also be an optimal tree).

BuildPerfectTree(Ĝ) /∗ Input: graph Ĝ = (V̂ , Ê). Output: a binary HC-tree T̂ ∗/

Set (A,B)= validBipartition(Ĝ); If(A = ∅ or B = ∅) Return(∅)
Set TA = BuildPerfectTree(ĜA); TB=BuildPerfectTree(ĜB)

Build tree T̂ with TA and TB being the two subtrees of its root. Return(T̂)

3

We say that (A,B) is a partial bi-partition of V̂ if A ∩ B = ∅ and A ∪ B ⊆ V̂ ; and (A,B) is a
bi-partition of V̂ (or Ĝ) if A ∩B = ∅, A,B 6= ∅, and A ∪B = V̂ .

Let V̂ = {x1, . . . , xn̂} and as before, for simplicity we sometimes use an index i of a node xi
to denote this node.

De�nition 4 (Triplet types). A triplet {xi, xj , xk} with edge weights wij , wik and wjk is

type-1: if the largest weight, say wij, is strictly larger than the other two; i.e, wij > wik, wjk;
type-2: if exact two weights, say wij and wik, are the largest; i.e, wij = wik > wjk;
type-3: otherwise, where all three weights are equal; i.e, wij = wik = wjk.

De�nition 5 (Valid partition). A partition (S1, . . . , Sm), m > 1, of V̂ (i.e, ∪Si = V̂ , Si 6= ∅, and
Si ∩ Sj = ∅) is valid w.r.t. Ĝ if (i) for any type-1 triplet {xi, xj , xk} with wij > max{wik, wjk},
either all three vertices belong to the same subset; or xi and xj are in one subset, while xk is in

the other; and (ii) for any type-2 triplet {xi, xj , xk} with xij = xik > xjk, it cannot be that xj
and xk are from the same subset, while xi are in the other one.

If this partition is a bi-partition, then it is also called a valid bi-partition.

The goal of procedure validBipartition(Ĝ) is to compute a valid bi-partition if it exists. This
step can be �nished in O(n̂3 log n̂). This means that each depth level during our recursive
algorithm takes O(

∑
i n

3
i log ni) = O(n3 log n) time. The total complexity is O(n4 log n) as

stated in theorem 2.

Theorem 2. Given a similarity graph G = (V,E) with n vertices, we can check whether it has

a perfect HC-structure, as well as compute an optimal HC-tree if it has, in O(n4 log n) time.

Graphs with almost perfect HC-structure. In practice, a graph with perfect HC-structure
could be corrupted with noise. We introduce a concept of graphs with an almost-perfect HC-
structure, and present a polynomial time algorithm to approximate the optimal cost.

De�nition 6 (δ-perfect HC-structure). A graph G = (V,E,w) has δ-perfect HC-structure,
δ ≥ 1, if there exists weights w∗ : E → R such that (i) the graph G∗ = (V,E,w∗) has perfect

HC-structure; and (ii) for any e = (u, v) ∈ E, we have 1
δw(e) ≤ w∗(e) ≤ δ · w(e). In this case,

we also say that G = (V,E,w) is a δ-perturbation of graph G∗ = (V,E,w∗).

Theorem 3. Suppose G = (V,E,w) is a δ-perturbation of a graph G∗ = (V,E,w∗) with perfect

HC-structure. Then we have (i) ρ∗G ≤ δ2; and (ii) we can compute a HC-tree T s.t. ρG(T) ≤
(1 + δ2) · ρ∗G (i.e, we can (1 + δ2)-approximate ρ∗G) in O(n3) time.

4 Ratio-cost function for Random Graphs

De�nition 7. Given a n×n symmetric matrix P with each entry Pij = P[i][j] ∈ [0, 1], G = (V =
{v1, . . . , vn}, E) is a random graph generated from P if there is an edge (vi, vj) with probability

Pij. Each edge in G has unit weight.

The expectation-graph G = (V,E,w) refers to the weighted graph where the edge (i, j) has

weight wij = Pij.

The main result is as follows.

Theorem 4. Given an n× n edge probability matrix P, assume each entry Pij = ω(
√

logn
n), for

any i, j ∈ [1, n]. Given a random graph G = (V,E) sampled from P, let T ∗ denote the optimal

HC-tree for G (w.r.t. ratio-cost), and T
∗
an optimal HC-tree for the expectation-graph G. Then

we have that with probability larger than 1− n−ε for some constant ε > 0,

ρ∗G = ρG(T
∗) = (1 + o(1))

totalCG(T
∗
)

EbaseC(G)
.

4

References

[1] C. C. Aggarwal and C. K. Reddy. Data Clustering: Algorithms and Applications. Chapman
& Hall/CRC, 1st edition, 2013.

[2] D. Arthur and S. Vassilvitskii. K-means++: The advantages of careful seeding. In Pro-

ceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
'07, pages 1027�1035, Philadelphia, PA, USA, 2007. Society for Industrial and Applied
Mathematics.

[3] M. Balcan and Y. Liang. Clustering under perturbation resilience. SIAM Journal on Com-

puting, 45(1):102�155, 2016.

[4] M. Charikar and V. Chatziafratis. Approximate hierarchical clustering via sparsest cut and
spreading metrics. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA '17, pages 841�854, Philadelphia, PA, USA, 2017. Society for
Industrial and Applied Mathematics.

[5] V. Cohen-Addad, V. Kanade, F. Mallmann-Trenn, and C. Mathieu. Hierarchical clustering:
Objective functions and algorithms. In Proceedings of the Twenty-Ninth Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA '18, pages 378�397, 2018.

[6] S. Dasgupta. A cost function for similarity-based hierarchical clustering. In Proceedings

of the Forty-eighth Annual ACM Symposium on Theory of Computing, STOC '16, pages
118�127, New York, NY, USA, 2016. ACM.

[7] W. F. de la Vega, M. Karpinski, C. Kenyon, and Y. Rabani. Approximation schemes for
clustering problems. In Proceedings of the Thirty-�fth Annual ACM Symposium on Theory

of Computing, STOC '03, pages 50�58, New York, NY, USA, 2003. ACM.

[8] D. Ghoshdastidar and A. Dukkipati. Consistency of spectral hypergraph partitioning under
planted partition model. Ann. Statist., 45(1):289�315, 02 2017.

[9] K. Rohe, S. Chatterjee, and B. Yu. Spectral clustering and the high-dimensional stochastic
blockmodel. Ann. Statist., 39(4):1878�1915, 08 2011.

[10] A. Roy and S. Pokutta. Hierarchical clustering via spreading metrics. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Infor-

mation Processing Systems 29, pages 2316�2324. Curran Associates, Inc., 2016.

5

Far-Away Spanning Trees
Jie Gao∗, Mayank Goswami†, Rebecca Schley†, Shih-yu Tsai∗, and Hao-Tsung Yang∗

∗Stony Brook University
†City University of New York

I. INTRODUCTION

The problem of computing minimum spanning trees is a
classical textbook problem. But not much is known about
how to find spanning trees that have ‘diversity’. Using trees
that do not share a lot of edges means better reliability under
potential failures or attacks. If one tree is destroyed, one can
quickly switch to a different tree. In many network tasks, it
is desirable to have multiple good solutions and to possibly
alternate between them to avoid being tracked or attacked by
adversaries [1], [2].

Given a graph G, a spanning tree is a connected subgraph
of G with no cycles. If the edges are weighted, a minimum
spanning tree is a spanning tree with minimum total weight.
There are two problems we focus on in this paper. First,
we look at k spanning trees that are far away from each
other – that is, the maximum number of edges shared by
any two trees is minimized. Secondly, we define k far-away
α-approximate spanning trees, which are selected within the
family of spanning trees with total weight at most α · |MST|
and the maximum number of edges that any two trees share
is minimized. We provide algorithms in the two problems
which achieve 2-approximation and (2 + ε)-approximation
respectively.

II. k FAR-AWAY SPANNING TREES

Given an undirected graph G = (V,E) and an integer k,
let us consider the set of all the spanning trees Ω1 of G. We
are going to construct k spanning trees T1, . . . , Tk ∈ Ω1 such
that

min
i6=j

d(Ti, Tj)

is maximum, where d is the Hamming distance. Let d∗ be the
optimal such value.

d∗ = max
T1,··· ,Tk∈Ω1

(min
i 6=j

d(Ti, Tj)).

We call such spanning trees which share the fewest number
of edges with each other “far-away spanning trees.”

A. Algorithm

We sequentially construct these k far-away spanning trees
by finding the farthest spanning tree from these constructed
trees, i.e. the minimum Hamming distance among all the
constructed trees is maximized. First, let T1 be an arbitrary
spanning tree. Next, by implementing Algorithm 1 we find
the spanning tree that is farthest from T1. Call this tree T2. As
we continue to iterate the algorithm, we will obtain tree Ti+1

that is farthest to T1, ...Ti. By running this algorithm k times,
we will get k spanning trees as the solution.

In Algorithm 1, we denote M as some large constant greater
than 1. The edge-weight can be interpreted as “how close to
one of the input trees.” For example, if an output spanning
tree has all edges with weight 1, it means the output spanning
tree shares no edges with any other input trees and thus is the
“farthest” tree. The intuition is to pick light edges one by one
without creating a cycle until the spanning tree is constructed
(lines 6 to 8). If there is a case in which the picked edge
belongs to some of the input trees Tj , the weight of all other
edges in Tj is increased by M such that the algorithm will
be likely to pick next edges which are from other input trees
(lines 9, 10). In this way, the algorithm will “fairly” pick edges
among all the input trees.

Algorithm 1 Generate i+ 1-th farthest tree

1: procedure i+ 1-TH-FARTHEST(V,E, {T1, . . . , Ti})
2: Set each edge e ∈ E with weight we, where

we =

{
M if e ∈ Tj for some j
1 otherwise

3: Order all edges in increasing order with respect to their
weight, storing the sequence into S.

4: Denote X as the set of picked edges, started with X =
∅.

5: repeat
6: Pop edge f , which has the smallest weight in S.
7: if adding f does not create a cycle in the subgraph

induced by X then
8: Add f into X .
9: For each input tree Tj , if f ∈ Tj , the edge-

weight of all other edges in Tj is increased by M .
10: Reorder S with respect to the updated weights.
11: end if
12: until There are n− 1 edges in X
13: Return the tree constructed by the edge set X .
14: end procedure

Remark. Algorithm 1 does not generate an optimal solution.

As a demonstration, let G be the graph in Figure 1. We wish
to generate two far-away spanning trees using Algorithm 1. On
the first iteration, the algorithm could generate the spanning
tree consisting of black edges in Figure 1. On the second
iteration, the algorithm must choose a previously used edge

Fig. 1: Graph G with the
first generated tree

Fig. 2: Two disjoint span-
ning trees

to connect the center node. The Hamming distance between
these two trees is 2. The optimal solution for two far-away
spanning trees on this graph is represented by the green and
red edges in Figure 2, which have the Hamming distance 3,
which is greater than the two trees generated by the algorithm.

Though Algorithm 1 does not achieve the optimal solution,
we prove that the approximation factor is 2 in the following.

B. 2-approximation

Lemma II.1. Given a set of i spanning trees, Algorithm 1
generates the i+ 1-th spanning tree which is the farthest tree
from the existing set. That is, for any spanning tree R,

min
j={1,...,i}

d(R, Tj) ≤ min
j={1,...,i}

d(Ti+1, Tj)

Proof. To prove this lemma we have two claims. To begin,
we define a ”free edge” as one not already used by any of
the previously generated spanning trees. A “non-free edge”
is one that has already been used in a previously generated
spanning tree. The first claim is that the algorithm constructs
Ti+1 by choosing as many ”free” edges as possible that do
not introduce a cycle. The second claim is that the algorithm
chooses “non-free” edges uniform randomly.

To prove the first claim, note that Algorithm 1 will choose
free edges before choosing non-free edges. Before it begins
selecting any non-free edges it will have constructed a forest
in G. This forest partitions the vertices of G into c components.
Clearly, each component is a tree. Now, for the sake of con-
tradiction, assume that a spanning tree R can be constructed
using the same edge set as Ti+1 except that R uses an available
free edge that Ti+1 does not use. The free edge either connects
two components or is an edge inside one of the components.
However, if the edge connected two components, the algorithm
would have chosen the free edge because it does not introduce
a cycle. If the edge is inside one of the components, then it
has selected more edges in that component which makes that
component as a non-tree, also a contradiction.

To prove the second claim, consider the point at which
Algorithm 1 has chosen all free edges and constructed the
forest of c components in G. To complete the spanning tree,
Algorithm 1 must choose c − 1 non-free edges that connect
the components. Recall that once the algorithm chooses any
edge in a tree, all edges in that tree are given a weight of M .
In each successive iteration of the algorithm, all edges used in
previously constructed trees have weight M . Since each tree

is a spanning tree, each tree has an edge that connects any
two components in the forest. Because all edges in previously
constructed trees have the same weight, the algorithm will
choose such an edge uniform randomly to connect any two of
the components.

We have proven both claims. Therefore, given i spanning
trees, Algorithm 1 constructs the i + 1-th tree which is the
farthest-away tree.

Theorem II.2. Algorithm 1 generates k spanning trees that
have minimum Hamming distance d from each other that is
at least 1

2d
∗, where d∗ is the optimal solution.

Proof. From Lemma II.1, we know that tree Ti generated at
the ith iteration of the algorithm is the furthest tree from
T1, · · · , Ti−1. This gives us several useful properties. First,
minj∈{1,··· ,i−1} d(Ti, Tj), the minimum Hamming distance
between the current tree and the previously generated trees,
is nondecreasing as i increases. Otherwise, tree Tj whose
Hamming distance is increasing is actually further away than
Tj−1 from the set of previously generated trees {T1, ...Tj−2}.
Second, the minimum Hamming distance between any two
trees in {T1, · · · , Tk} is exactly the minimum Hamming
distance between Tk and {T1, · · · , Tk−1}.

Define:
d = min

j∈{1,··· ,k−1}
d(Tk, Tj).

Consider the metric space with the metric on the space being
the Hamming distance. The prior observation implies that if
we draw balls of radius d centered at each of T1, ...Tk−1,
then these k−1 balls include all of the spanning trees. Notice
that there exist k spanning trees T ∗1 , . . . , T

∗
k which comprise

the optimal set of spanning trees achieving the maximum
minimum Hamming distance. There are k−1 balls that contain
the k spanning trees T ∗1 , . . . , T

∗
k . By the Pigeonhole Principle,

two spanning trees must lie in the same ball. W.L.O.G, let
them be T ∗1 , T

∗
2 . Let the center of this considered ball be Tj .

By the definition of d∗ and the triangle inequality, we get

d∗ ≤ d(T ∗1 , T
∗
2) ≤ d(T ∗1 , Tj) + d(Tj , T

∗
2) ≤ 2d.

III. k FAR-AWAY α-SPANNING TREES

For this problem, consider an undirected weighted graph
G = (V,E) with edge weights ce, an integer k, and a budget
α, where α ≥ 1. We define an α-spanning tree as a tree
whose edge weights sum to at most α times the weight of
the minimum spanning tree of G. We consider the set of all
the spanning trees Ωα of G. The problem is to construct k
α-spanning trees T1, ..., Tk ∈ Ωα such that

min
i,j∈{1,2,,,k},i6=j

d(Ti, Tj)

is maximum, where d is the Hamming distance function. Let
d∗α be the optimal distance for this problem. That is,

d∗α = max
T1,··· ,Tk∈Ωα

(min
i 6=j

d(Ti, Tj)).

Notice that it would not be interesting if d∗α is pretty small,
(e.g. d∗α = 1), since there is no much difference if we just
output any k arbitrary α spanning trees. Therefore, we assume
that the farthest α-spanning tree to any one α-spanning tree
has distance more than 2(n−1)

3 .

A. Algorithm Based on Multi-Criteria Spanning Tree
We give an algorithm that returns an approximate solution

to the k far-away α-spanning tree problem. Similar to Sec-
tion II-A with the same notations, we design Algorithm 2
and sequentially construct these k far-away α-spanning trees
by finding the “almost farthest” α-spanning tree from these
constructed trees (We will define “almost farthest” later). That
is, let T1 be an arbitrary α-spanning tree and Ti+1 is the
“almost farthest” from T1, T2, · · ·Ti. As we continue to iterate
Algorithm 2 k times, we will get k α-spanning trees.

Algorithm 2 Generate the i+ 1-th almost farthest α-spanning
tree

1: procedure ITH-ALMOST-FARTHEST(V,E, {T1, . . . , Ti})
2: With the constructed trees T1, ...Ti, let the edge set of
Tj be Ej

3: if There is a disjoint α-spanning tree from all con-
structed trees T1, ...Ti then

4: Return the disjoint spanning tree
5: else
6: for h from 1 to |V | − 1 do
7: Run Algorithm 3 with inputs T1, ...Ti, α/(1 +
ε), and h.

8: if Algorithm 3 returns an α-spanning tree then
9: Return the found solution

10: end if
11: end for
12: end if
13: end procedure

Algorithm 2 firstly check if there is an α-spanning tree that
is disjoint to all other input trees T1, · · · , Ti (line 3,4). This
part can be implemented by removing all edges from the input
graph and run Kruskal’s algorithm [3] to see the generated tree
is either an α-spanning tree. If it is not the case, Algorithm 2
iteratively runs Algorithm 3 (line 6 to 11), which gives an
α-spanning tree that is “almost farthest” to all input trees.
Paramter h is interpreted as the maximum number of sharing
edges for the output tree Ti+1 to any input tree Tj , where
Tj ∈ {T1, · · · , Ti}. To define the term “almost farthest”, we
are given a fixed ε, where 1 > ε > 0. We said that an
α-spanning tree is almost farthest to trees T1, . . . , Ti if the
minimum Hamming distance from this tree to trees T1, . . . , Ti
is at least 1

1+ε times the furthest possible Hamming distance.
That is, a tree T is almost farthest to trees T1, . . . , Ti if

min
j∈{1,...,i}

d(T, Tj) ≥
maxT ′∈Ωα(minj∈{1,...,i} d(T ′, Tj))

1 + ε
.

Thus, we claim Algorithm 3 output a tree whose minimum
Hamming distance at least n−1−(1+ε)h∗c to the constructed

trees, where h∗c is the maximum number of sharing edges
between the farthest α-spanning tree to any input spanning
tree.

Algorithm 3 is a modified version of the PTAS for finding
multi-criteria spanning trees in Chapter 11.3 [4] with the
objective function being zero and the parameter settings as
follows.

c1 = ce
L1 = α

1+ε |MST |
c2,j = the identity function for Ej
L2,j = h

The multi-criteria spanning tree problem considered here is:

minimize 1

subject to
∑

e∈E
xe = |V | − 1,

∑

e∈E(S)

xe ≤ |S| − 1, ∀S ⊂ V
∑

e∈E
c2,j(e)xe ≤ L2,j , ∀1 ≤ j ≤ i

∑

e∈E
c1(e) xe ≤ L1, ∀S ⊂ V

xe ≥ 0, ∀e ∈ E

(1)

Given the results of the above linear program, Algorithm 2 will
generate the almost furthest α-spanning tree, where |MST | is
denoted as the weight of minimum spanning tree.

Algorithm 3 Generate a multi-criteria spanning tree

1: procedure MC-TREE(V,E, {T1, . . . , Ti}, α/(1 + ε), h)
2: Among all edges in the optimal solution, we will guess

all the edges with edge weight c1(e) ≥ εα
(1+i)(1+ε) |MST |

or c2,j(e) ≥ ε
1+ih for some j ∈ {1, · · · , i}.

3: Include all guessed edges in the solution and contract
them. Delete all other edges from G that satisfy at least
one of the aforementioned thresholds.

4: Update L1 by removing the included edges total c1-
cost. Similarly, update L2,j as well.

5: if there is an optimal extreme point solution x to the
updated linear programming 1 then

6: Remove every edge e with xe = 0.
7: Select any spanning tree in the support graph.
8: Return the solution with the union of guessed

edges and selected tree.
9: end if

10: end procedure

Theorem III.1. Algorithm 2 runs in polynomial time with
fixed values ε and k.

Proof. Algorithm 2 iteratively runs Algorithm 3 for at most
n−1 times. When ε and k are fixed, the number of all possible
guesses is bounded in m

k2

ε . Thus, the total running time is
O(n ·m k2

ε).

B. 2(1 + ε)-approximation

Lemma III.2. Given i α-spanning trees, Algorithm 1 gener-
ates the i+ 1-th α-spanning tree which is an almost farthest
α-spanning tree. That is,

min
j∈{1,··· ,i}

d(Ti+1, Tj) ≥
maxT ′∈Ωα minj∈{1,··· ,i} d(T ′, Tj)

1 + ε
.

Proof. Let the parameter h of the found (i+ 1)-th tree to be
h′. Then the PTAS guarantee for the linear program 1 ensures
that the tree is an α-spanning tree and that it shares at most
(1+ε)h′ edges with any previously constructed tree. Hence, its
Hamming distance, d = minj∈{1,··· ,i} d(Ti+1, Tj), is at least
n− 1− (1 + ε)h′.

On the other hand, let

d∗ = max
T ′∈Ωα

min
j∈{1,··· ,i}

d(T ′, Tj),

which means the farthest α-spanning tree from these con-
structed i trees has the optimal Hamming distance d∗ and it has
exactly n− 1− d∗ maximum edges shared with any previous
tree. When the parameter h is n − 1 − d∗, this optimal tree
is a feasible solution to the linear program 1. By the PTAS
guarantee, Algorithm 3 in turn is guaranteed to produce a tree
when h is n− 1− d∗. It is possible that the algorithm finds a
tree earlier than the time when h is n−1−d∗, so the parameter
h of the found tree, h′, is at most n− 1− d∗.

By the prior observations, the minimum Hamming distance
of the (i+ 1)-th produced tree is at least d∗

1+ε as the following
sequence of inequalities said.

d ≥ n− 1− (1 + ε)h′ by the first observation
≥ n− 1− (1 + ε)(n− 1− d∗) by the second observation
≥ d∗

1+ε by our assumption and
0 < ε < 1

Theorem III.3. Algorithm 1 gives k α-spanning trees that
have minimum Hamming distance dh that is at least 1

2(1+ε)d
∗
α.

Proof. The analysis is similar to the 2-approximation anal-
ysis for the far-away spanning tree. The only difference is
the radius of the balls centered at trees T1, . . . , Tk−1. By
Lemma III.2, setting the radius (1 + ε)dh will ensure these
balls cover all the α-spanning trees, including the trees in the
optimal set {T ∗1 , . . . , T ∗k }. If the minimum Hamming distance
dh is between Ti and Ti′ with i < i′, then the ball of radius
(1+ε)dh centered at Ti−1 contains all the α-spanning trees ex-
cepts T1, · · · , Ti−1. However, these balls cover T1, · · · , Ti−1

as well since they are centered at T1, · · · , Tk−1. Hence, we
will have

d∗α ≤ d(T ∗1 , T
∗
2) ≤ d(T ∗1 , Tj) + d(Tj , T

∗
2) ≤ 2(1 + ε)dh.

REFERENCES

[1] Clayton W Commander, Panos M Pardalos, Valeriy Ryabchenko, Stan
Uryasev, and Grigoriy Zrazhevsky. The wireless network jamming
problem. Journal of Combinatorial Optimization, 14(4):481–498, 2007.

[2] Ahmad Bilal Asghar and Stephen L Smith. Stochastic patrolling in
adversarial settings. In American Control Conference (ACC), 2016, pages
6435–6440. IEEE, 2016.

[3] Thomas H Cormen. Section 24.3: Dijkstra’s algorithm. Introduction to
algorithms, pages 595–601, 2001.

[4] Lap Chi Lau, Ramamoorthi Ravi, and Mohit Singh. Iterative methods
in combinatorial optimization, volume 46. Cambridge University Press,
2011.

FWCG 2018, Flushing, NY, United States, October 26–27, 2018

Computing Trajectory with Clearance for an Articulated Probe∗

Ovidiu Daescu† Kyle Fox† Ka Yaw Teo†

Abstract

We consider an extension of the articulated probe tra-
jectory planning problem introduced in [1] by requiring
to compute a probe trajectory with a given clearance
from obstacles or to report that no such trajectory ex-
ists. The probe is modeled as two line segments ab and
bc, with a joint at the common point b, where bc is of
fixed length r and ab is of arbitrarily large (infinite)
length. Initially, ab and bc are collinear. Given a set
of obstacles in the form of n line segments and a tar-
get point t, the probe is to first be inserted in straight
line, followed possibly by a rotation of bc, so that in the
final configuration c coincides with t, all while avoid-
ing intersections with the obstacles. We prove that, for
any constant δ > 0, a feasible probe trajectory with a
clearance δ can be determined in O(n2 log n) time using
O(n2) space.

1 Introduction

Consider the following trajectory (or motion) planning
problem. An articulated needle-like probe is modeled
in <2 as two line segments, ab and bc, joined at point
b. Line segment bc may rotate at point b. The length
of line segment ab can be arbitrarily large (infinitely
long), while line segment bc has a fixed length r (e.g.,
unit length). A two-dimensional workspace is defined as
the region bounded by a circle S, which encloses a set P
of n disjoint line segment obstacles (see Figure 1). Let
t be a point in the free space (i.e., inside S and outside
the obstacles).

In the beginning, the probe assumes a straight con-
figuration, that is, line segments ab and bc are collinear,
with b ∈ ac. We call this an unarticulated configuration.
Starting from outside S, the unarticulated probe, rep-
resented by straight line segment abc, may be inserted
into S as long as no obstacle is intersected by abc. After
the insertion, line segment bc may be rotated at point
b up to π/2 radians in either direction, provided that
line segment bc does not collide with any obstacle. If a
rotation is performed, then we have an articulated con-
figuration of the probe.

∗This work is an extension of the paper [1] presented at the
30th Canadian Conference on Computational Geometry, 2018.
†Department of Computer Science, University of Texas

at Dallas, Richardson, TX, USA. {ovidiu.daescu, kyle.fox,

ka.teo}@utdallas.edu

Figure 1: Planning a trajectory of a given clearance
from obstacles for an articulated probe. After a straight
insertion of line segment abc, in order to reach point t in
the midst of obstacles, line segment bc may be required
to rotate from its intermediate position (black dashed
line) to the final position (black solid line). Each obsta-
cle line segment is “dilated” by a distance δ > 0 using
Minkowski sum to ensure that any computed feasible
probe trajectory has a clearance of at least δ from the
obstacles.

A feasible probe trajectory consists of an initial inser-
tion of straight line segment abc, possibly followed by a
rotation of line segment bc at point b, such that point
c ends at the target point t, while avoiding obstacles in
the process of insertion and rotation.

Because bc may only rotate up to π/2 radians, it is an
easy observation that for any feasible probe trajectory,
point b is the first intersection of segment ab with a
circle C of radius r centered at point t. As illustrated
in Figure 1, segment bc may rotate about point b, and
the area swept by segment bc is a sector of a circle (a
portion of a disk enclosed by two radii and an arc) with
a radius r, a center located on C, and the endpoint of
one of its two bounding radii located at point t.

When no clearance from the obstacles is required, a
feasible solution can be obtained using an O(n2 log n)
time, O(n log n) space algorithm as presented in [1].

In this work, we address a more general version of the
problem, which asks to find a feasible probe trajectory
of a given clearance δ from the obstacles for any con-
stant δ > 0 (a δ-clearance probe trajectory for short). A
feasible probe trajectory is claimed to have a clearance

28th Fall Workshop on Computational Geometry, 2018

δ from the obstacles if and only if every point of the tra-
jectory is of at least distance δ from its nearest obstacle.
We describe an algorithm that finds a δ-clearance probe
trajectory in O(n2 log n) time using O(n2) space.

2 Motivation

In the field of robotics, a simple articulated probe such
as one defined herein is useful for reaching targets pre-
viously unattainable through a straight path by circum-
venting surrounding obstacles. Finding a collision-free
probe trajectory with a certain clearance from the ob-
stacles is of practical relevance, particularly in mini-
mally invasive robotic surgery, where the probe is re-
quired to maintain a safe distance from any surrounding
critical structures.

3 Solution approach

Our algorithm follows the general framework of the so-
lution proposed in [1], which begins with the following
observation.

Lemma 1 There exists a feasible probe trajectory such
that the probe assumes either I) an unarticulated final
configuration (i.e., a straight line segment abc with c =
t) that is tangent to an obstacle, or II) an articulated
final configuration (i.e., line segments ab and bc are not
colinear and c = t) that is tangent to an obstacle outside
C and another obstacle inside or outside C.

Based on the observation stated in Lemma 1, the
set of extremal feasible probe trajectories with a given
clearance δ can be obtained using the following ap-
proach.

For each obstacle line segment s of P , we define
H(s, δ) = s⊕Bδ to be the dilation of s by a distance δ,
where Bδ is a closed disk of radius δ, and s⊕Bδ denotes
the Minkowski sum of s and Bδ. A dilated line segment
H(s, δ) has the shape of a stadium – a rectangle with
two semi-circles attached to its sides (see Figure 1). Let
Q = {H(s, δ)|s ∈ P} denote the resulting set of dilated
line segments. Notice that the total number of vertices
(and edges) of the dilated line segments of Q is O(n).

For the purpose of analysis and clarity, the dilated
line segments of Q are divided into those lying inside
C and those lying outside C. Since the boundary of a
dilated line segment may intersect C at most four times,
a dilated line segment may be partitioned by C into at
most four open (piecewise) curves, each of which may
consist of line segments and circular arcs. Let Qin be
the set of curves lying inside C with nin = |Qin|; let
Qout be the set outside C with nout = |Qout|. Note that
nin + nout = O(n).

The complexity of each dilated line segment of Q is
O(1); that is, the tangent line from a point to a dilated

line segment, as well as the common tangent lines of two
dilated line segments, can be computed in O(1) time.
For the sake of brevity, a dilated line segment obstacle
is henceforth referred to as simply an obstacle.

The main added difficulty in our case, when com-
pared to [1], is that after enlarging the obstacle line
segments with a disk of radius δ to account for the re-
quired clearance, we have to work with obstacles with
circular arc edges. That imposes a change on the data
structures needed to handle various operations, particu-
larly for visibility computation and circular arc queries,
as detailed next.

Case I. δ-clearance unarticulated probe trajectory

We compute the set R of O(n) rays, each of which i)
originates at point t, ii) is tangent to an obstacle of Q,
and iii) does not intersect any obstacle of Q. Each ray
γ ∈ R represents an extremal δ-clearance unarticulated
probe trajectory.

The problem of finding the set R of rays (as well as
some others that follow) can be reduced to the following
radial visibility problem.

Given a fixed point t and a real number r, let C be a
circle of radius r centered at t. Given a set Q of n
obstacles of constant complexity inside C, return the
portion of C visible from t.

A simple algorithm is suggested as follows for solving
the radial visibility problem. At first, find the two tan-
gent lines from t to each obstacle in O(n) time. Assume
that t is located at (0, 0), and let θ be the angle of any
said tangent line relative to the x-axis. Then, the pair of
tangent lines to an obstacle defines a (possibly empty)
occluded θ-interval I = (θs, θf), within which circle C is
invisible from t due to the obstruction by the obstacle,
where 0 ≤ θs ≤ θf < 2π.

The resulting O(n) occluded θ-intervals, possibly
overlapping, can be sorted by increasing value of θs in
O(n log n) time, and can then be merged in O(n) time
to yield a set of non-overlapping occluded θ-intervals.
The complement of these occluded θ-intervals is the set
of visibility θ-intervals that indicates the portion of C
visible from t.

Lemma 2 Given a fixed point t and a real number r, let
C be a circle of radius r centered at t. Given a set Q of
n obstacles of constant complexity inside C, the portion
of C visible from t can be determined in O(n log n) time.

The set R of rays are given by the endpoints of the
visibility θ-intervals. Thus, based on Lemma 2, the total
time required to compute R is O(n log n).

Lemma 3 The set of extremal δ-clearance unarticu-
lated probe trajectories can be determined in O(n log n)
time.

FWCG 2018, Flushing, NY, United States, October 26–27, 2018

Case II. δ-clearance articulated probe trajectory

For ease of exposition, the two subcases of Case II,
depending on whether an articulated final configuration
is tangent to 1) an obstacle outside C and an obstacle
inside C, or 2) two obstacles outside C, are considered
separately.

Subcase 1. In order to find a feasible probe trajectory
with an articulated final configuration that is tangent to
an obstacle outside C and another obstacle inside C, we
first determine a feasible articulated final configuration
in the following manner.

We compute the set Rin of rays, each of which i)
originates at point t, ii) is tangent to an obstacle of
Qin, and iii) does not intersect any obstacle of Qin.
For each ray γin ∈ Rin, find the intersection point b
of γin and C in O(1) time, and compute the set Rout
of rays, each of which i) originates at point b, ii) is
tangent to an obstacle of Qout, and iii) does not intersect
any obstacle of Qout. A pair of rays γin ∈ Rin and
γout ∈ Rout intersecting at a point b defines a feasible
final configuration that is tangent to an obstacle outside
C and an obstacle inside C.

According to Lemma 2, Rin and Rout (for each ray
γin ∈ Rin) can be obtained in time O(nin log nin)
and O(nout log nout), respectively. Given that |Rin| is
bounded by O(nin), the worst-case running time for
finding a pair of rays γin and γout intersecting at a point
b is O(nin log nin + ninnout log nout).

After finding a probe trajectory with a feasible artic-
ulated final configuration, we examine the feasibility of
its associated intermediate configuration (i.e., the probe
configuration after inserting straight line segment abc
into S and before rotating line segment bc).

For each computed point b, we consider a circle B of
radius r centered at b, and find the visibility θ-intervals
in O(nb log nb) time (see Lemma 2), where nb is the
number of obstacles lying within B. Let ns be the num-
ber of obstacles within distance 2r from point t. Note
that nb ≤ ns for any point b ∈ C. Recall that the size
of Rin is bounded by O(nin) (i.e., the upper bound on
the number of distinct points b computed). Thus, the
total time required to find the visibility θ-intervals for
all computed points b is O(ninns log ns).

After finding the visibility θ-intervals for a point b,
one can determine if a given radius of circle B intersects
with any obstacle inside B in O(log ns) time by using a
binary search. Hence, it takes O(log ns) time to deter-
mine if a segment bc (of an intermediate configuration)
intersects with any obstacle. Since there could be
O(ninnout) such segments bc, the worst-case running
time for finding a feasible final configuration (that is
tangent to an obstacle inside C and another obstacle
outside C) with a feasible intermediate configuration
is O(nin log nin + ninnout log nout) + O(ninns log ns +

ninnout log ns).

Subcase 2. In order to find a feasible probe trajectory
with an articulated final configuration that is tangent to
two obstacles outside C, we first determine a feasible in-
termediate configuration using the following procedure.

We compute the set R of rays, each of which i) orig-
inates from some point on circle S, ii) is a common
tangent line between two obstacles of Qout, iii) does not
intersect any obstacle of Qout, iv) intersects C, and v)
goes at least distance r beyond the intersection point
with C without intersecting any obstacle of Q.

R can be obtained by using the visibility complex of
Q. The visibility complex is a two-dimensional subdi-
vision in which each cell corresponds to a collection of
rays with the same visibility properties [3]. For a sim-
ple scene of n obstacles with constant complexity, the
visibility complex can be computed in O(n log n + k)
time using O(k) space, where k is the size of the visi-
bility complex (or the corresponding tangent visibility
graph). In the worst case, k = O(n2). After the visibil-
ity complex of Q is built, we can find the set R of rays
(i.e., the set of bitangent lines that satisfy the obstacle-
free restriction above) by simply traversing the cells of
the visibility complex in O(n2) time.

After finding a probe trajectory with a feasible in-
termediate configuration, we determine if its associated
final configuration is feasible.

Lemma 2 can be applied as follows in determining
whether a segment bt (of a final configuration) inter-
sects with any obstacle. The visibility θ-intervals are
computed with respect to circle C centered at point
t in O(nin log nin) time. Given that O(n2out) such
segments bt are to be examined (using binary searches),
the worst-case running time for finding a feasible
intermediate configuration (that is tangent to two
obstacles outside C) with a feasible final configuration
is O(n2) +O(nin log nin + n2out log nin).

An articulated probe trajectory with both a feasible
final configuration and a feasible intermediate configura-
tion is feasible if and only if the area swept by segment
bc after the initial insertion (i.e., a circular sector) is
not intersected by any obstacle. Thus, the remainder
of Case II entails a circular sector intersection problem,
detailed in the next section.

4 Circular sector intersection queries

The general circular sector intersection query problem
can be formally stated as follows.

Given a set Q of n obstacles, preprocess it so that, for
a query circular sector σ, one can efficiently determine
whether σ intersects Q.

28th Fall Workshop on Computational Geometry, 2018

For our purposes, it suffices to solve a special case of
this problem where the radius of the circular sector is
fixed to r and one endpoint of the circular arc of the
sector is fixed at t.

Recall that a pair of feasible final and intermediate
configurations for an articulated probe trajectory have
been found in the previous section. Thus, both radii of
the query circular sector are certainly not intersected
by any obstacle of Q. Therefore, an obstacle can only
intersect with a circular sector by i) intersecting the
sector’s arc, or ii) lying completely inside the sector.
Hence, our case of the circular sector intersection
problem reduces to the following two problems – i)
circular arc intersection query, and ii) circular sector
emptiness query.

Circular arc intersection queries. Consider the fol-
lowing circular arc intersection problem.

Problem 1 Given a set Q of n line segments and semi-
circular arcs, preprocess it so that, for a query circular
arc γ that originates at a fixed point t and has a fixed
radius r, one can efficiently determine if γ intersects Q.

Problem 1 can be solved by using a similar data struc-
ture (i.e., lower envelopes) as constructed in [1]. In brief,
for any θ ∈ [0, 2π), a unique circle D of radius r cen-
tered at some point p ∈ C can be defined such that the
angle of tp relative to the x-axis is θ. Note that cir-
cle D always passes through t. A lower envelope can
then be computed to represent the length of the circu-
lar arc of D from t to the first intersection with a line
segment (or a semi-circular arc) of Q. Given that two
semi-circular arcs (or an arc and a line segment, or two
line segments) of Q can intersect at most two times,
the size of the lower envelope is bounded by the fourth-
order Davenport-Schinzel sequence, which isO(n·2α(n)),
where α(n) is the inverse of the Ackermann function.
The lower envelope can be computed in O(nα(n) log n)
time [2, 4]. A binary search can be performed on the
lower envelope to determine if a query circular arc γ
intersects Q. Thus, the following result is obtained.

Lemma 4 A set Q of n line segments and circular arcs
can be preprocessed in O(nα(n) log n) time into a data
structure of size O(n ·2α(n)) so that, for a query circular
arc γ that originates at a fixed point t and has a fixed
radius r, one can determine whether γ intersects Q in
O(log n) time.

Circular sector emptiness queries. Our special case
of the circular sector emptiness problem can be stated
as follows.

Problem 2 Given a set Q of n points in the plane,
preprocess it so that, for a query circular sector σ of
fixed radius r whose arc has an endpoint at a fixed point

t, one can efficiently determine whether σ contains any
point of Q.

Problem 2 can be solved as previously described in [1],
and the result is summarized in the following lemma.

Lemma 5 A set Q of n points in the plane can be pre-
processed in O(n log n) time into a data structure of size
O(n log n) so that, given a query circular sector σ with
radius r and an endpoint of its arc located at t, one can
determine whether σ contains any point of Q in O(log n)
time.

Recall that ns is the number of obstacles within dis-
tance 2r from point t. In Case II, given that O(ninnout+
n2out) queries are to be processed in the worst case and
we only need to worry about obstacles lying sufficiently
close to t, the following result is obtained.

Lemma 6 A δ-clearance articulated probe trajec-
tory can be determined in time O(nin log nin +
ninnout log nout) + O(ninns log ns + ninnout log ns) +
O(n2) + O(nin log nin + n2out log nin) + O((ninnout +
n2out) log ns) using O(n2 + ns log ns) space.

Theorem 7 A δ-clearance probe trajectory can be de-
termined in O(n2 log n) time using O(n2) space.

5 Conclusion

We presented an efficient algorithm for computing a δ-
clearance probe trajectory in O(n2 log n) time. Our al-
gorithm can be easily extended to the case of polygonal
obstacles, where we can exploit output sensitive algo-
rithms with respect to the number of polygons. Our
algorithm has the same time complexity as when no
clearance is required; however, the space complexity in-
creases from O(n log n) to O(n2). We believe that it
is possible to reduce the space usage to O(n log n) by
using an incremental construction of the visibility com-
plex. Finally, an open problem remains as to how the
space of the feasible solutions can be characterized.

References

[1] O. Daescu, K. Fox, and K. Teo. Trajectory planning for
an articulated probe. In 30th Canadian Conference on
Computational Geometry, pages 296–303, 2018.

[2] J. Hershberger. Finding the upper envelope of n line
segments in O(n log n) time. Information Processing
Letters, 33(4):169–174, 1989.

[3] M. Pocchiola and G. Vegter. The visibility complex. In-
ternational Journal of Computational Geometry & Ap-
plications, 6(3):279–308, 1996.

[4] M. Sharir and P. K. Agarwal. Davenport-Schinzel se-
quences and their geometric applications. Cambridge
University Press, 1995.

Computing Simple Polygonizations of Disjoint Line Segments is

NP-Complete ∗

Hugo A. Akitaya† Matias Korman† Mikhail Rudoy‡ Diane L. Souvaine†

Csaba D. Tóth§†

1 Introduction

Simple polygons are foundational for Computational Geometry. A natural problem is to find simple
polygonizations of point sets, i.e., given a point set S in the plane, a simple polygonizations of
S is a simple polygon P whose vertex set is S. It is easy to see that, unless all points are collinear,
every point set S has a simple polygonization. There are several results on the upper and lower
bounds on the number of simple polygonizations of point sets (see [1] and [10] for the currently
best known bounds, and [3] for a survey on this and related problems).

A natural generalization of this problem is finding simple polygonizations of line segments:
given a set S of line segments in the plane, find a simple polygon whose vertex set is the set of
endpoints of segments in S, and whose edge set contains S. The problem can also be phrased as a
graph augmentation problem: Can a geometric graph be augmented to a simple Hamiltonian cycle?
Deciding whether such simple polygon exists is NP-complete [8] in the general case. However the
hardness proof provided requires that segments in the input share endpoints. Rappaport [8] con-
jectured in 1989 that the problem remains hard even if the input consists of disjoint line segments,
but the problem remained open since then. In the special case that every segment has at least
one endpoint on the boundary of the convex hull, an O(n log n) time algorithm is available [9]. In
this paper, we confirm the conjecture and show that deciding whether a given set of disjoint line
segments admits a simple polygonizations is NP-complete.

Further Related Previous Work. Many different variations of the polygonization problem
have been considered in the literature. Hoffmann and Tóth [2] proved that the vertex visibility
graph of a set S of n disjoint segments in the plane is Hamiltonian (as long as not all segments
lie on a line). This implies a slightly weaker result: there exists a simple polygon with 2n vertices
in which every segment in S is an edge, an internal diagonal, or an external diagonal. Ishaque
et al. [4] proved that n disjoint segments can be augmented to a 2-regular planar straight-line
graph if n is even. A circumscribing polygon, for a set S of n disjoint segments in the plane,
is a simple polygon with 2n vertices in which every segment in S is either an edge or an internal

∗Research supported in part by the NSF awards CCF-1422311 and CCF-1423615. MK was partially supported
by MEXT KAKENHI No. 17K12635.
†Department of Computer Science, Tufts University, Medford, MA, USA.
‡MIT CSAIL, 32 Vassar St., Cambridge, MA 02139, USA. Now at Google.
§Department of Mathematics, California State University Northridge, Los Angeles, CA, USA.

1

diagonal. Urabe and Watanabe [11] constructed a set of 16 disjoint segments that does not admit
a circumscribing polygon. A circumscribing polygon is guaranteed to exist when (i) every segment
has at least one endpoint on the boundary of the convex hull [5], or (ii) no segment intersects the
supporting line of any other segment [6]. It is also known that every set of n disjoint segments
has a subset of Ω(n1/3) segments that admits a circumscribing polygon [7]. However, no nontrivial
upper bound is known.

2 Hardness for Disjoint Segments

The reduction in [8] is from Hamiltonian Path in Planar Cubic Graphs (HPPCG) and pro-
duces an instance containing axis-aligned line segments. Each segment shares at least one endpoint
with another segment and endpoints are located in the integer grid. In practice, a polygonal chain
formed by such segments must be contained in any simple polygonization of the input.

Theorem 1. It is NP-complete to decide whether a set S of disjoint line segments admits a simple
polygonization, even if S contains only segments with 4 orientations.

Proof. We reduce from finding simple polygonizations of line segments. Our input is an instance
produced by the reduction in [8]. We label an endpoint in this instance useful if it is the endpoint
of a single segment. We prove that we can incrementally replace chains of two segments by disjoint
line segments while preserving the existence or non-existence of a solution. Our strategy is to
replace a pair of segments p1p2 and p2p3 that share an endpoint p2 by seven disjoint segments
p1p

′
2, p4p5, p6p7, p8p9, p10p11, p12p13, and p2p3. Refer to Figure 1. We call this construction a

connection gadget. We must prove two properties: (i) any simple polygonization of the modified
input will contain a chain using only the seven segments in the gadget and connecting p1 to p3; (ii)
if p1 (resp., p3) is labeled useful, the set of useful endpoints visible from p1 (resp., p3) is the same
before and after the replacement.

Figure 1: (a) Two line segments p1p2 and p2p3. (b) Connection gadget that simulates (a) using
seven disjoint line segments. The polygonal path shown with black and blue line segments is
[p1, p

′
2, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p2, p3]. (c) The union of the visibility region of the solid

black points p4 and p13.

We first give an overview and then give the details of the proof. The main property of the
connection gadget is that the points p6 and p7 (resp., p10 and p11) can only see p4, p5, and p8 (p9,
p12, and p13). Then any solution must connect p8 with p6 or p7, and p6 or p7 to p4 or p5, or else
there would be a cycle of length 4 disconnected from the rest of the solution. The same argument

2

applies symmetrically to p9, . . . , p13. Fig. 1(c) shows the forced connections in red. We choose the
position of the segments so that points p4, p5, p12, and p13 can only see points p6, p11, p2, and p′2.
Then p′2 must connect to p4 or p5, and p2 must connect to p12 or p13, or else there would be a cycle
of length 10 disconnected from the rest of the solution. Then, property (i) holds. Property (ii) also
holds if we place points p4, . . . , p13 close to p2 so that the visibility of p1 and p3 are not affected.

We now show where to place the segments in the connection gadget. Recall that our input
contains endpoints on integer coordinates. We assume that the bounding box of the construction
is in the first quadrant and contains the origin. We describe the gadget for the orientation shown
in Figure 1. Other orientations can be obtained by reflections. We first describe the position of
auxiliary lines. Refer to Fig. 2(a). The dashed line `1 connects p2 + (0, 14) and p2 + (14 , 0), and will
contain p9 and p8. Let `2 (resp., `3) be the line passing through (0, y(p2)− 3

4) (resp., (0, y(p2)− 1
2))

and p2. Let a (resp., b) be the intersection point between `2 (resp., `3) and `1, and `4 be the line
through (0, y(p2)− 1

4) and b or the line through p2 + (−1
4 , 0) and b, whichever has larger slope. Let

t be the intersection of `4 and `2. We place p′2 at the intersection between `4 and x = x(p2). We
will place points p4, . . . , p7 and p10, . . . , p13 in the triangle defined by `1, `2 and `4: ∆abt. This
guarantees that these points will not be able to see any endpoint not in the gadget.

Figure 2: The figures are not drawn to scale. (a) The construction of the dashed line `1 and the
lines `2, `3, and `4; (b)The placement of the segments p4, . . . , p7, and p10, . . . , p13; (c)The placement
of the line segment p8, p9.

Refer to Fig. 2(b). Let c be the midpoint of the segment ab. Place p4 (resp., p13) on the
intersection of `2 and y = y(c) (resp., `4 and x = x(c)). Let d be the minimum between the
distances between `1 and p4, and `1 and p13. We define another line `5 being parallel to and below
`1, and the distance between `1 and `5 is d

2 . Place p5 (resp., p12) at the intersection between `5
and y = y(c) (resp., x = x(c)). Let `6 (resp., `7) be the line through p′2 and p4 (resp., p2 and p13).
Place the segment p6p7 (resp., p10p11) parallel to p4p5 (resp., p12p13) and inside the triangle defined
by `5, y = y(c), and `6 (resp., `5, x = x(c), and `7). The construction guarantees that p2 and p′2
cannot see segments p6p7 or p10p11. Refer to Fig. 2(c). Place p8 (resp., p9) at the intersection of `1
and the line through p4 and p2 +(0, 12) (resp., the line through p13 and p2 +(12 , 0)). The positioning
of p8p9 blocks the visibility of p4, . . . , p7 and p10, . . . , p13 so that they can’t see any point above `1.
This concludes the construction for one connection gadget.

After replacing every shared endpoint by a connection gadget, the instance contains disjoint line
segments of four directions. The construction satisfies properties (i) and (ii), and the correctness

3

of the proof is implied by these properties. All coordinates of new points are solutions of linear
equations, and thus the coordinates of endpoints can be described by polynomials. The membership
in NP is proven in [8].

3 Open Problems

• In Section 2 we established NP-hardness, even when the input consists of segments with four
directions. Does the hardness still hold if segments have only three (or even fewer) distinct
directions?

• Does every set of disjoint axis-parallel segments admit a circumscribing polygon?

• Let f(n) be the maximum integer such that every set of n disjoint segments contains f(n)
segments that admit a circumscribing polygon. It is known that f(n) < n [11]. Is it possible
that f(n) = Ω(n)? Is there a nontrivial upper bound?

• Let g(n) be the maximum integer such that every set of n disjoint segments contains g(n)
segments that can be extended to disjoint rays (i.e., half-lines). It is not difficult to show that
g(n) ≤ f(n). Pach and Rivera-Campo [7] proved that g(n) = Ω(n1/3), and there is an easy
construction that yields g(n) = O(

√
n). What is the asymptotic growth rate of g(n)?

References

[1] Alfredo Garćıa, Marc Noy, and Javier Tejel. Lower bounds on the number of crossing-free subgraphs of
KN. Comput. Geom., 16(4):211–221, 2000.

[2] Michael Hoffmann and Csaba D. Tóth. Segment endpoint visibility graphs are Hamiltonian. Comput.
Geom., 26(1):47–68, 2003.

[3] Ferran Hurtado and Csaba D. Tóth. Plane geometric graph augmentation: A generic perspective. In
János Pach, editor, Thirty Essays on Geometric Graph Theory, pages 327–354. Springer, New York,
2013.

[4] Mashhood Ishaque, Diane L. Souvaine, and Csaba D. Tóth. Disjoint compatible geometric matchings.
Discrete & Computational Geometry, 49(1):89–131, 2013.

[5] Andranik Mirzaian. Hamiltonian triangulations and circumscribing polygons of disjoint line segments.
Comput. Geom., 2:15–30, 1992.

[6] Joseph O’Rourke and Jennifer Rippel. Two segment classes with Hamiltonian visibility graphs. Comput.
Geom., 4:209–218, 1994.

[7] János Pach and Eduardo Rivera-Campo. On circumscribing polygons for line segments. Comput. Geom.,
10(2):121–124, 1998.

[8] David Rappaport. Computing simple circuits from a set of line segments is NP-complete. SIAM Journal
on Computing, 18(6):1128–1139, 1989.

[9] David Rappaport, Hiroshi Imai, and Godfried T. Toussaint. Computing simple circuits from a set of
line segments. Discrete & Computational Geometry, 5(3):289–304, 1990.

[10] Micha Sharir, Adam Sheffer, and Emo Welzl. Counting plane graphs: Perfect matchings, spanning
cycles, and kasteleyn’s technique. J. Comb. Theory, Ser. A, 120(4):777–794, 2013.

[11] Masatsugu Urabe and Mamoru Watanabe. On a counterexample to a conjecture of Mirzaian. Comput.
Geom., 2:51–53, 1992.

4

Challenges in Reconstructing Shapes from

Euler Characteristic Curves

Brittany Terese Fasy∗† Samuel Micka† David L. Millman† Anna Schenfisch∗

Lucia Williams†

October 18, 2018

Abstract

Shape recognition and classification is a problem with
a wide variety of applications. Several recent works
have demonstrated that topological descriptors can
be used as summaries of shapes and utilized to com-
pute distances. In this abstract, we explore the use of
a finite number of Euler Characteristic Curves (ECC)
to reconstruct plane graphs. We highlight difficul-
ties that occur when attempting to adopt approaches
for reconstruction with persistence diagrams to recon-
struction with ECCs. Furthermore, we highlight spe-
cific arrangements of vertices that create problems for
reconstruction and present several observations about
how they affect the ECC-based reconstruction. Fi-
nally, we show that plane graphs without degree two
vertices can be reconstructed using a finite number
of ECCs.

1 Introduction

Shape comparison and classification is a common task
in the field of computer science, with applications
in graphics, geometry, machine learning, and several
other research fields. The problem has been well-
studied in R3, with several approaches described in
the survey [6]. One relatively new approach to the
problem involves utilizing topological descriptors to
represent and compare the shapes. In [7], Turner et
al. proposed the use of the zero- and one-dimensional
persistence diagrams from lower-star filtrations to
compare triangulations of Sk in Rd, for d > k. We
call the mapping of a shape to to a parameterized
set of diagrams the persistent homology transform
(PHT). Their main result (Cor. 3.4 of [7]) showed
that the persistent homology transform (PHT) is in-

∗Depart. of Mathematical Sciences, Montana State U.
†School of Computing, Montana State U.

{brittany.fasy, david.millman, annaschenfisch}@montana.edu
{samuel.micka, lucia.williams}@msu.montana.edu

jective for comparing triangulations of S2 or S1 em-
bedded in R3 (or triangulations of S1 in R2), and thus
can be used to distinguish different shapes. Turner
et al. also extend the idea of the PHT to the Euler
Characteristic Curve (ECC) and describe the Euler
Characteristic Transform (ECT), a topological sum-
mary that records changes in the Euler Characteristic
across a height parameter, again from all directions.
Finally, using experimental results, the authors show
that the PHT and ECT performed well in cluster-
ing tasks. In [2], Crawford et al. extend this work by
proposing the smooth Euler Characteristic Transform
(SECT), a functional variant of the ECT with favor-
able properties for analysis. They show that features
derived from the SECT of tumor shapes are better
predictors of clinical outcomes of patients than other
traditional features.

The proof of injectivity (i.e., that a shape can be
reconstructed from the PHT or the ECC) uses an in-
finite set of a directions; however, using an infinite
set of directions is infeasible for computational pur-
poses. Thus, both [2, 7] use sampling a finite set of
directions for the height filtrations in order to apply
the technique to shape comparison. In [1], Belton
et al. present an algorithm for reconstructing plane
graphs using a quadratic (hence, finite) number of
persistence diagrams. Simultaneous to that result,
other researchers also attempted to give a finite num-
ber of directions sufficient to fully determine a shape.
Both [3] and [5] give upper bounds on the number of
directions needed to determine a hidden shape in Rd.
In order to do this, they make assumptions about the
curvature and geometry of the input shape. In our
work, by contrast, we restrict to plane graphs, but
make no restrictions on curvature.

Here, we attempt to extend the work of [1] on the
PHT to the ECT. However, difficulties arise when
using ECCs because they do not encode information
about every vertex from every direction, as a persis-
tence diagram does when on-diagonal points are in-

1

cluded. We show that, while the number of directions
needed to give an ECT unique to the input graph is
linear in the number of vertices of the graph, it is
difficult to determine which directions generate the
necessary ECCs. As we will see, the main difficulty
lies with the presence of degree two vertices.

2 Background

In this paper, we focus on a subset of finite simpli-
cial complexes that are composed of only edges and
vertices and are provided with a planar straight-line
embedding in R2. We refer to these simplicial com-
plexes as plane graphs. We refer the reader to [4] for a
general background on persistent homology, and only
present the necessary content here.

Assumptions LetK be a plane graph. In what fol-
lows, we assume that the vertices of K have distinct
x- and y-coordinates from one another. Furthermore,
we assume that no three vertices are collinear.

Lower-Star Filtration Let S1 be the unit sphere
in R2. Consider s ∈ S1, i.e., a direction vector in R2;
we define the lower-star filtration with respect to s.
Let hs : K → R be defined for a simplex σ ⊆ K by
hs(σ) = maxv∈σ v · s, where x · y is the inner (dot)
product and measures height in the direction of unit
vector y. Intuitively, the height of σ with respect to s
is the maximum “height” of all vertices in σ. Then,
for each h ∈ R, the subcomplex Kh := h−1s ((−∞, h])
is composed of all simplices that lie entirely below or
at the height h, with respect to the direction s. The
lower-star filtration is sequence of subcomplexes Kh,
where h increases from −∞ to ∞; notice that Kh

only changes when h is the height of a vertex of K.
When we observe a difference between Kh−ε

and Kh+ε, we know that we have encountered a ver-
tex. As in [1], we define a structure to encode what
we know about this vertex in R2. Given s ∈ S1, and a
height h ∈ R, the filtration line at height h is the line,
denoted `(s, h), perpendicular to direction s and at
height h in direction s. Given a finite set of vertices
V ⊂ R2, the filtration lines of V are the set of lines

L(s, V) = {`(s, h) | ∃v ∈ V s.t. h = v · s}.

Further, L(s, V) will contain |V | lines if and only if no
two vertices have the same height in direction s. Our
assumptions guarantee distinct vertex heights only
for (0, 1), (0,−1), (1, 0), and (−1, 0), referred to as
the cardinal directions. In [1], every line in L(s, V)
can be read off of the persistence diagram, as every
simplex corresponds to either a birth or the death of

a homology class. Next, we observe that we cannot
witness all such lines for another topological descrip-
tor, the Euler Characteristic Curve.

Euler Characteristic Curves The Euler charac-
teristic of a plane graph K = (V,E) is |V |− |E|. The
Euler Characteristic Curve (ECC) is the piecewise
step function of the Euler characteristic, whose do-
main is subcomplexes of a filtration defined by some
parameterization of K. In this paper, the parameter
is the height of a lower-star filtration. Specifically,
we define χKs : R → Z to be the function that maps
a height h to the Euler Characteristic of Kh. Every
change in the ECC corresponds to a filtration line
from that direction, but not vice versa. For exam-
ple, if an edge and vertex appear at the same height,
then the ECC does not change. We now refine our
definition of filtration lines:

W(s, V) = {`(s, h) | ∃ε0 > 0 s.t. ∀ε ∈ (0, ε0),

χKs (h− ε) 6= χKs (h+ ε)}.

This set corresponds to the subset of vertices in V
that are witnessed from s through the ECC χKs . As
such, we refer to these lines as witnessed lines. We
note that the only time that a vertex is not witnessed
is if the vertex is included in the filtration at the
same time as an edge because the vertex being added
will be cancelled out by the inclusion of the edge.
Furthermore, we note that v lying on a filtration line
from s does not necessarily imply that v is witnessed
from s, i.e., it could lie on a witness line for another
vertex if they lie at the same height from s.

3 Towards Vertex Reconstruction

We are interested in reconstructing a plane graph
from ECCs from a finite number of directions.
While three directions was sufficient for reconstruct-
ing vertices using persistence diagrams, ECCs contain
strictly less information in each direction. We observe
the existence of a linear number of directions that al-
lows to fully reconstruct the vertices of a plane graph:

Proposition 1 (ECC Existence). Given a plane
graph K = (V,E) with |V | = n, there exist 3n di-
rections that can be used to reconstruct all vertices
in V .

The proof of this claim may be found in Ap-
pendix A. We note that while 3n directions are suf-
ficient, this bound is likely not tight.

Initially, attempting to use the techniques in [1]
seems promising for plane graph reconstruction using
ECCs, i.e., we can define a correspondence between

2

Figure 1: Scenario where a degree two vertex not wit-
nessed by the cardinal directions can create a three-
way line intersection where a vertex does not exist.
The three-way intersection without a vertex is circled
in red.

three-way witness line intersections (from carefully
chosen directions) and vertices. However, certain
types of vertices introduce difficulties. For example,
consider Figure 1. A degree two vertex is not wit-
nessed by any of the witness lines from the cardinal
directions (1, 0), (0, 1), (−1, 0) and (0,−1). However,
we would like to generate a correspondence between
three-way intersections of witness lines and non de-
gree two vertices. If we use the technique described
in Theorem 5 of [1] to choose such a direction, that
direction creates a witness line that causes a three-
way intersection not corresponding to a vertex. In
fact, when degree two vertices are introduced to the
plane graph, several problems arise. We discuss these
problems in detail in Section 4.

4 Degree Two Challenges

Degree two vertices introduce several complications
in finding witness directions, because degree two ver-
tices can have an arbitrarily small region on S1 from
which they can be witnessed. For example, in Fig-
ure 2 the vertices v1, v2, and v3 are nearly collinear.
In order to witness v2, we must choose directions
from within the red region, where a decrease in the
ECC will be observed, or from the blue region, where
an increase in the ECC will be observed. However,
these these regions becomes arbitrarily small as v1,
v2 and v3 approach collinear.

v2

v1

v3

Figure 2: Case where v1, v2, and v3 are nearly
collinear. As the vertices approach collinear the re-
gion on S1 containing directions which will witness v2
grows arbitrarily small.

v6

v7v4
v5

v1

v3

v2

Figure 3: Different scenarios of edge embeddings
for degree two vertices. We consider v2 a de-
gree two vertex when considering, exclusively, the
sets of edges {(v1, v2), (v3, v2)}, {(v4, v2), (v5, v2)}, or
{(v6, v2), (v7, v2)}. These three sets of edges highlight
situations in which v2 can be witnessed in different
ways.

As mentioned earlier, degree two vertices can also
introduce additional ambiguities when witnessing
non-degree two vertices. Recall the example found
in Figure 1 and the discussion in Section 3.

Despite these difficulties, several situations ex-
ist in which degree two vertices can be witnessed.
The following propositions summarize these scenar-
ios. Proofs are provided in Appendix A. For clarity,
we discuss quadrants as though v2 is located at the
origin. However, note that the following propositions
also apply to arrangements with similar orientations
and angles.

Proposition 2 (Same Quadrant). If v1 and v3 lie
in the same quadrant, such as the vertices v4 and v5
in Figure 3, then v2 will be witnessed in ECCs from
every one of the cardinal directions.

Proposition 3 (Neighboring Quadrants). If v1 and
v3 lie in neighboring quadrants, such as vertices v1
and v3 in Figure 3, then v2 will be witnessed in ECCs
from exactly two of the four cardinal directions.

3

Proposition 4 (Degree Two Bounded Angle). If
angle((v1, v2), (v2, v3)) < π

2 then v2 will be witnessed
in ECCs from at least two of the four cardinal direc-
tions.

The above propositions show scenarios for which
degree two vertices can be witnessed using cardinal
directions. However, degree two vertices pose partic-
ular problems when the edges lie in non-neighboring
quadrants, such as the edges (v6, v2) and (v7, v2) in
Figure 3 or (v1, v2) and (v2, v3) in Figure 2. Then,
when degree two vertices are not included in a plane
graph K, a constant number of ECCs can be used to
determine the embeddings of the vertices.

5 A Special Case

If a plane graph contains no degree two vertices, the
graph can be reconstructed using a finite number of
ECCs. Let K denote a plane graph with vertex and
edge sets V and E respectively. Recall from [1] that
three way filtration line intersections from carefully
chosen directions correspond to a vertex location for
plane graphs using persistence diagrams. We show
that this result still holds for reconstructing plane
graphs using ECCs, if they do not contain degree
two vertices. The proofs of the following lemmas and
theorem can be found in Appendix A.

First, we provide a lemma that yields insight into
how non-degree two vertices are witnessed.

Lemma 1 (Linear Witness Lines). Let K be a plane
graph in R2 with vertices V such that for all v ∈ V ,
deg(v) 6= 2 and denote |V | = n. Let ` be a line in R2

such that any line parallel to ` intersects at most one
vertex in V . Let s ∈ S1 be chosen perpindicular to `.
Then,

|W(s, V) ∪W(−s, V)| = n

By generalizing the results of Lemma 1, we intro-
duce the the following Lemma to generate n2 poten-
tial vertex locations in R2, where n is the number of
vertices.

Lemma 2 (Witness Line Intersections). Recall the
cardinal directions (0, 1), (1, 0), (0,−1), (−1, 0) ∈ S1.
If for all v ∈ V , deg(v) 6= 2 then

|W((0, 1), V) ∪W((0,−1), V)| = n, and

|W((1, 0), V) ∪W((−1, 0), V)| = n.

Utilizing these n horizontal and n vertical witness
lines, we are able to pick two additional directions to

generate three-way filtration line intersections using
a technique similar to the one described in Theorem 5
of [1]. Then, the following theorem holds as well.

Theorem 1 (ECC Vertex Reconstruction). Let K =
〈V,E〉 be a plane graph with vertices V and edges
E. If for all v ∈ V , deg(v) 6= 2 then the locations
of all vertices can be determined using six ECCs in
O(n log n) time.

The proof of Theorem 1 is found in Appendix A,
but note that the result follows using similar argu-
ments to those found in Theorem 5 of [1].

6 Discussion and Future Work

We have shown that, for any known plane graph K,
we can choose a linear number of directions to fully
describe K using only ECCs from those directions.
However, when K is unknown, determining such a
set is difficult. We emphasize that although there
is an infinite number of directions in which the ver-
tices of a plane graph can be witnessed by an ECC,
the presence of degree two vertices can restrict these
directions to an arbitrarily small subset of S1.

Our ultimate goal is to further develop the theory
on determining the minimal set of directions neces-
sary to reconstruct shapes. We are currently inves-
tigating upper bounds on the number of directions
needed to reconstruct a plane graph from ECCs. Ad-
ditionally, we are exploring what assumptions we can
place on the underlying shape in order to overcome
the challenges of degree two vertices. For example,
we observe that if the number of vertices |V | = n is
known, then the intersection of m > n filtration lines
determines the location of all vertices. Another sim-
plifying assumption is that minimum angle between
any three vertices, ε, is known. Then, we can avoid
some of the issues described in Section 4 by employ-
ing pairs of directions whose difference in angle is less
than ε. Finally, we would like to extend our work to
more general shapes embedded in Rd.

Acknowledgements This material is based upon
work supported by the National Science Foundation
under Grant No. CCF 1618605 (authors BTF and
SM) and Grant No. DBI 1661530; BTF and AS ac-
knowledge the support of NIH and NSF under Grant
No. NSF-DMS 1664858.

References

[1] Robin Lynne Belton, Brittany Terese Fasy, Ros-
tik Mertz, Samuel Micka, David L Millman,

4

Daniel Salinas, Anna Schenfisch, Jordan Schup-
bach, and Lucia Williams. Learning simpli-
cial complexes from persistence diagrams. arXiv
preprint arXiv:1805.10716, 2018.

[2] Lorin Crawford, Anthea Monod, Andrew X.
Chen, Sayan Mukherjee, and Ral Rabadn. Func-
tional data analysis using a topological summary
statistic: The smooth Euler characteristic trans-
form. arXiv:1611.06818, 2016.

[3] Justin Curry, Sayan Mukherjee, and Katharine
Turner. How many directions determine a shape
and other sufficiency results for two topological
transforms. arXiv:1805.09782, 2018.

[4] Herbert Edelsbrunner and John Harer. Compu-
tational Topology: An Introduction. American
Mathematical Society, 2010.

[5] Robert Ghrist, Rachel Levanger, and Huy Mai.
Persistent homology and Euler integral trans-
forms. arXiv:1804.04740, 2018.

[6] Johan W. H. Tangelder and Remco C. Veltkamp.
A survey of content based 3d shape retrieval
methods. Multimedia Tools and Applications,
39(3):441, Dec 2007.

[7] Katharine Turner, Sayan Mukherjee, and
Doug M. Boyer. Persistent homology transform
for modeling shapes and surfaces. Informa-
tion and Inference: A Journal of the IMA,
3(4):310–344, 2014.

A Proofs

Proof of Proposition 1 (ECC Existence)

Proof. Let v ∈ V be a vertex in K. First, we show
that each vertex is witnessed from an infinite number
of directions S1. If deg(v) = 0, v is witnessed from
any direction for which it lies on a unique witness line
(So, for all but |V |−1 directions). If deg(v) = 1 with
edge (v, v′) for some v′ ∈ V , then v is observed from
an the infinite set of directions from which v′ appears
after v in the lower-star filtration, and v lies on a
unique witness line. If deg(v) > 1 with edges (v, v′)
and (v, v′′) for v′, v′′ ∈ V , then v is observed from any
direction from which v′ and v′′ appear before v in the
filtration and v lies on a unique witness line. Thus,
each vertex is witnessed from an infinite number of
directions.

Let Iv be the set of directions that witness v. We
can choose any three directions from Iv and gener-
ate a unique three-way intersection at v. Now, we

need to show that a set of directions exist for each
of the n vertices such that no three-way intersections
exist at locations where a vertex is not located. In
order to do this, we give the vertices some arbitrary
ordering v1, v2, . . . , vn. Then, select vertices in as-
cending order. For the first, any three directions in
Iv1 will give a single three-way intersection of witness
lines. For each successive vertex vi, there exist up to
3i2 witness lines. More importantly, the number of
three-way witness line intersections is finite. Thus,
there exist three directions in Ivi such that none of
the witness lines created by these directions intersect
existing intersections. Since the x- and y-coordinates
of a vertex can be determined using a three-way line
intersection, we can see that there exist a set of 3n
directions which generates exactly n three-way inter-
sections of witness lines, revealing the location of all
n vertices.

Proof of Proposition 2 (Same Quadrant)

Proof. If v1 and v3 lie in the same quadrant, then
v1 and v3 will appear before v2 from exactly one of
the two x-axis parallel directions directions (−1, 0)
or (1, 0) and before v2 in exactly one of the y-
axis parallel directions (0,−1) or (0, 1). Let s1 ∈
{(0, 1), (0,−1)} and s2 ∈ {(1, 0), (−1, 0)} be the di-
rections that witness v1 and v3 before v2. χKs1 and
χKs2 will witness v2 by seeing a decrease in the Eu-
ler Characteristic at the time that v2 is first included
in the filtration. Then, −s1 and −s2 will witness v2
before v1 or v2. Since no other edges with v2 as an
endpoint exist, there will be an increase in χK−s1 and
χK−s2 at the time that v2 is first included in the fil-
tration. Then, v2 is witnessed from every cardinal
direction, as required.

Proof of Proposition 3 (Neighboring Quadrants)

Proof. Recall that no two vertices share x- or y-
coordinates, then any witness line from a cardinal
direction will be unique. Let s be the cardinal direc-
tion for which v1 ·s < v2 ·s and v3 ·s > v2 ·s and −s the
cardinal direction chosen such that v3 · s < v2 · s and
v1 ·s > v2 ·s. Then, there is no change in Euler Char-
acteristic at v2 from either s or −s, since v2 is added
at the same time as (v1, v2) or (v2, v3), respectively.
Now, let w and −w be the remaining two cardinal
directions, where w is the direction from which we
include v2 before v1 or v3. Direction w witnesses v2
because no edges are included at height v2 from that
direction. Direction −w witnesses v2 because both
(v1, v2) and (v2, v3) are added along with v2. Thus,

5

v2 is witnessed from exactly two of the four cardinal
directions.

Proof of Proposition 4 (Degree Two Bounded
Angle)

Proof. If angle((v1, v2), (v2, v3)) < π
2 , then v1 and v3

must lie in neighboring quadrants or the same quad-
rant, since neither can lie on the boundary of a quad-
rant by assumption. If they are in the same quadrant,
Proposition 2 tells us that they must be seen from all
four cardinal directions. If they are in neighboring
quadrants, Proposition 3 tells us that we can witness
v2 with ECCs from exactly two of the four cardinal
directions.

Proof of Lemma 1 (Linear Witness Lines)

Proof. We show that each vertex is seen by at least
one of s or−s. Let v ∈ V be a vertex with deg(v) = 0.
Then, v will correspond to `(s, v) for any arbitrary
direction s ∈ S1 because χKs will always increase by
at least one at time s · v. As such, v will be observed
by both s and −s.

Let v ∈ V be a vertex with deg(v) = 1 and (v, v′) ∈
E for some v′ ∈ V . Then, if s ∈ S1 is chosen such
that s · v′ < s · v, v will not result in a change in χKs .
However, s was chosen such that no two vertices will
be observed at the same time. As a result, no edge
in E can be parallel to `. Then, if s · v′ < s · v then
−s · v′ ≥ −s · v and an increase in χK−s is seen at time
−s · v. This implies that v is observed by s or −s but
not both.

Finally, if v ∈ V is a vertex with deg(v) > 2, then
we must consider two cases. If, for s ∈ S1, there exists
exactly one edge (v, v′) ∈ E such that s·v′ < s·v, then
there must exist at least two additional edges that will
result in a decrease in χK−s at time −s · v. As such, v
will be observed by at least one of the ECCs resulting
from s or −s. On the other hand, if, for s ∈ S1, there
exists either zero edges or more than one edge that
appear before v in the height filtration from s, then
χKs will either increase (in the case where no edges
appear before v) or decrease (in the case where two
or more edges appear before v). Then, all non-degree
two vertices result in a change in χKs or χK−s and, as
such, |W(s, V) ∪W(−s, V)| = n, as required.

Proof of Lemma 2 (Witness Line Intersections)

Proof. By Lemma 1, if s is chosen such that no
two vertices are intersected by a line perpendicu-
lar to s, then W(s, V) ∪ W(−s, V) will result in n
filtration lines. Recall that no two vertices in K

share an x- or y-coordinate. Then, by Lemma 1,
|W((0, 1), V)∪W((0,−1), V)| = n and |W((1, 0), V)∪
W((−1, 0), V)| = n, as required.

Proof of Theorem 1 (ECC Vertex Reconstruc-
tion)

Proof. Using Lemma 2 we construct n horizontal and
n vertical lines corresponding to vertices using four
ECCs and we denote them LH and LV respectively.
Then, we must identify an additional two directions
which will, together, generate an additional n unique
witness lines and exactly n three-way filtration line
intersections. We choose these final directions s3 ∈ S1
and −s3 using the method described in Theorem 5
of [1]. We observe that, by Lemma 4 of [1], no two
vertices will be intersected by any single line per-
pindicular to s3. Then, since each vertex will be wit-
nessed by at least one of the ECCs from W(s3, V)
or W(−s3, V) by Lemma 1, these two directions will
yield n distinct filtration lines each of which will in-
tersect exactly one two-way intersection between lines
of LH and LV . Then, Lemma 3 of [1] implies that
these three-way intersections are the locations of the
n vertices in V . The O(n log n) running time follows
from the proof of Theorem 5 in [1].

6

Colored range closest-pair problem under general distance

functions∗

Jie Xue
University of Minnesota, Twin Cities

xuexx193@umn.edu

1 Background

The closest-pair problem, which aims to find the closest pair of points in a given dataset of points in
R2 (or more generally Rd), is one of the most fundamental problems in computational geometry and
finds many applications in various scenarios, e.g., traffic control, similarity search, etc. A natural
and important generalization of this problem is the colored closest-pair problem in which the given
data points are colored and the point pairs of interest are only the bichromatic ones (i.e., those
consisting of two points of different colors), namely, we want to find the closest bichromatic pair of
points. This colored version has applications in analyzing categorical data, and is strongly related
to Euclidean minimum spanning tree [2, 6]. The closest-pair problem and its generalization can be
considered under the Euclidean metric or more general metrics (such as Lp-metrics).

The range closest-pair (RCP) problem, introduced in [9] for the first time, is the range-search
version of the classical (single-shot) closest-pair problem which aims to store a given dataset S into
some data structure which can report, for a specified query range X, the closest pair of points in
S ∩X. The RCP problem in R2 (under the Euclidean metric) has been studied in prior work over
the last decades, see for example [1, 7, 8, 9, 10, 13].

Compared to traditional range-search problems, the RCP problem (even the uncolored version)
is much more challenging due to a couple of reasons. First, as a range-search problem, the RCP
problem is non-decomposable in the sense that even if the dataset S can be written as S = S1 ∪S2,
the closest pair of points in S∩X cannot be obtained via those in S1∩X and S2∩X. This makes the
decomposition-based techniques inapplicable to the RCP problem. Second, since the RCP problem
concerns the pairwise distances of the points, it is difficult to apply “mapping”-based approaches to
solve the problem. For example, it is well-known that 2D circular range reporting can be reduced to
3D halfspace range reporting via a lifting argument. However, this reduction does not work for the
RCP problem because the lifting changes the pairwise distances of the points. For another example,
consider vertical strip queries in R2. Range reporting for vertical strip queries is “pointless”, as it
is just the 1D range-reporting problem, after projecting the data points to the x-axis. Again, this
projection argument does not apply to the RCP problem as it changes the pairwise distances of the
points, and the RCP problem for vertical strip queries is actually nontrivial [10, 13].

∗Accepted to ACM-SIAM Symposium on Discrete Algorithms (SODA’19). A full version of the paper is available
online [12] (https://arxiv.org/abs/1807.09977).

1

Similarly to the single-shot closest-pair problem, the RCP problem can be naturally generalized
to the colored range closest-pair (CRCP) problem in which we want to store a colored dataset and
report the closest bichromatic pair of points contained in a query range. Surprisingly, despite of
much effort made on the RCP problem, this generalization has never been considered previously.
In this paper, we make the first progress on the CRCP problem. Unlike the previous work, we
do not restrict ourselves to the Euclidean metric. Instead, we investigate the problem under a
general metric satisfying some certain condition. This covers all Lp-metrics for p > 0 (including
the L∞-metric). The CRCP problem is even harder than the (uncolored) RCP problem, especially
when considered under such a general metric. As such, we are interested in answering CRCP
queries approximately. That is, for a specified query range X, we want to report a bichromatic
pair of points in X whose distance is at most (1 + ε) · Opt where Opt is the distance of the closest
bichromatic pair of points in X and ε is a pre-specified parameter. Our main goal is to design
efficient (1 + ε)-approximate CRCP data structures in terms of space and query time.

2 Related work

The closest-pair problem and range search are both the most fundamental problems in Computa-
tional Geometry, see [3, 11] for surveys. Approximate range search is also well-studied in the last
decades, see for example [4, 5]. The RCP problem was introduced by Shan et al. [9] for the first
time. Subsequently, the problem in R2 was studied by [1, 7, 8, 10]. The papers [7, 8, 10] consid-
ered the problem with orthogonal queries, while [1] studied halfplane queries. Recently, Xue et al.
[13] improved the above results. The state-of-the-art RCP data structure for rectangle query uses
O(n log2 n) space and O(log2 n) query time [13]. In higher dimensions, the RCP problem is still
open. To our best knowledge, the only known result that can be generalized to higher dimensions
is a simple data structure given in [8], which only has guaranteed average-case performance. All
these results were limited to the Euclidean metric and uncolored case.

3 Our contributions and techniques

We investigate the CRCP problem under a general metric that is induced by a monotone norm (see
the full version [12] for a formal definition); in particular, this includes all Lp-metrics for p > 0 and
the L∞-metric. We design (1 + ε)-approximate CRCP data structures for orthogonal queries in R2

and higher dimensions, where ε > 0 is a pre-specified parameter. The performances of these data
structures are summarized in Table 1, and we give a brief explanation below.

Our main result is two (1 + ε)-approximate CRCP data structures for rectangle queries in R2;
see the gray rows of Table 1. In the process of designing these data structures, we also obtain
efficient data structures for strip and quadrant queries. Using similar techniques, we also achieve
results in higher dimensions. Specifically, we design data structures for slab and 2-box queries in Rd

(which are generalizations of strip and quadrant queries in R2 respectively) and dominance queries
in R3. All of our data structures use near-linear space and poly-logarithmic query time (when ε is
regarded as a constant). Preprocessing time is not considered in this paper, and we leave this as
an open question for future work1. Our new results are interesting for the following reasons.

1Preprocessing RCP-related data structures is usually a hard task. For instance, how to build efficiently the
state-of-the-art orthogonal RCP data structures in [13] is still unknown.

2

• Previously, only the uncolored RCP problem was studied. We make the first progress on the
CRCP problem. Furthermore, we do not make any assumption on the coloring of the dataset.

• The previous work considered the RCP problem only under the Euclidean metric. Our results
can be applied to a quite general class of metrics including all Lp-metrics.

• Almost all existing results on the RCP problem were restricted to R2. Our techniques give
some results beyond that (while our main focus is still on R2), leading us towards better
understanding of the CRCP problem in higher dimensions.

Dimension Query Space Query time

R2

Strip O(ε−1n log2 n) O(log n + log(1/ε))

Quadrant O(ε−1n log2 n) O(log n + log(1/ε))

O(ε−1n log4 n) O(log4 n + ε−1 log3 n + ε−2 log n)
Rectangle

O(ε−1n log3 n) O(log5 n + ε−1 log4 n + ε−2 log2 n)

Rd Slab O(ε−1n logd n) O(log n + log(1/ε))

2-Box O(ε−1n logd n) O(log n + log(1/ε))

R3 Dominance O(ε−1n log6 n) O(ε−2 log9 n + ε−4 log3 n)

Table 1: The performances of our (1 + ε)-approximate CRCP data structures.

Our techniques. Unfortunately, the techniques used in the (uncolored) RCP problem are inappli-
cable to the CRCP problem even under the Euclidean metric. Thus, we develop new techniques to
solve the problem. Our first technical contribution is the notion of RCP coresets. Roughly speak-
ing, an RCP coreset of a set of point pairs is a subset that approximately preserves the closest-pair
information in every query range. This notion gives us a natural way to design an approximate
CRCP data structure, namely, storing an RCP coreset of the set of all bichromatic pairs and
searching for the answer in the coreset. This idea works only when there exists a small-size RCP
coreset. We prove that if the query space (i.e., the collection of the query ranges) satisfies some
nice property and the metric is induced by a monotone norm, then a small-size RCP coreset always
exists. Using this result, we obtain efficient approximate CRCP data structures for both strip and
quadrant queries. Our second technique is an anchored version of the CRCP problem, in which
an anchor point o is specified with the query range and we want to report the closest o-anchored
bichromatic pair (see the full version [12] for a formal definition) contained in the query range. We
give an efficient (approximate) anchored CRCP data structure for rectangle queries, which works
for any metric induced by a monotone norm. Based on the above results, we design our rectangle
CRCP data structures. The main idea is to use range trees to reduce a rectangle CRCP query to
several strip and quadrant CRCP queries and anchored CRCP queries. Using our strip/quadrant
CRCP data structures and anchored CRCP data structure mentioned above, we eventually obtain
the two approximate CRCP data structures for rectangle queries. Our results in higher dimensions
are achieved using similar techniques and ideas.

References

[1] M. A. Abam, P. Carmi, M. Farshi, and M. Smid. On the power of the semi-separated pair
decomposition. In Workshop on Algorithms and Data Structures, pages 1–12. Springer, 2009.

3

[2] Pankaj K Agarwal, Herbert Edelsbrunner, Otfried Schwarzkopf, and Emo Welzl. Euclidean
minimum spanning trees and bichromatic closest pairs. Discrete & Computational Geometry,
6(3):407–422, 1991.

[3] Pankaj K Agarwal, Jeff Erickson, et al. Geometric range searching and its relatives. Contem-
porary Mathematics, 223:1–56, 1999.

[4] Sunil Arya and David M Mount. Approximate range searching. Computational Geometry,
17(3-4):135–152, 2000.

[5] Bernard Chazelle, Ding Liu, and Avner Magen. Approximate range searching in higher dimen-
sion. Computational Geometry, 39(1):24–29, 2008.

[6] David Eppstein. Dynamic euclidean minimum spanning trees and extrema of binary functions.
Discrete & Computational Geometry, 13(1):111–122, 1995.

[7] Prosenjit Gupta. Range-aggregate query problems involving geometric aggregation operations.
Nordic journal of Computing, 13(4):294–308, 2006.

[8] Prosenjit Gupta, Ravi Janardan, Yokesh Kumar, and Michiel Smid. Data structures for range-
aggregate extent queries. Computational Geometry: Theory and Applications, 2(47):329–347,
2014.

[9] Jing Shan, Donghui Zhang, and Betty Salzberg. On spatial-range closest-pair query. In Inter-
national Symposium on Spatial and Temporal Databases, pages 252–269. Springer, 2003.

[10] R. Sharathkumar and P. Gupta. Range-aggregate proximity queries. Technical Report
IIIT/TR/2007/80. IIIT Hyderabad, Telangana, 500032, 2007.

[11] Michiel Smid. Closest point problems in computational geometry. Citeseer, 1995.

[12] Jie Xue. Colored range closest-pair problem under general distance functions. arXiv preprint
arXiv:1807.09977, 2018.

[13] Jie Xue, Yuan Li, Saladi Rahul, and Ravi Janardan. New bounds for range closest-pair prob-
lems. Proceedings of the 34th International Symposium on Computational Geometry, 2018.

4

Local cliques in ER-perturbed random geometric graphs

Matthew Kahle1, Minghao Tian2, and Yusu Wang2

1Department of Mathematics, The Ohio State University, USA
2Computer Science and Engineering Dept., The Ohio State University, USA

1 Introduction

Random graphs are mathematical models which have ap-
plications in a wide spectrum of domains. Erdős–Rényi
graph G(n, p) is one of the oldest and most-studied models
for networks [15], constructed by adding edges between all
pairs of n vertices with probability p independently. Many
global properties of this model are well-studied by using
probabilistic method [1], such as the clique number and the
phase transition behaviors of connected components w.r.t.
parameter p.

Another classical type of random graphs is the random
geometric graph G(Xn; r) introduced by Edgar Gilbert in
1961 [10]. This model starts with a set of n points Xn ran-
domly sampled over a metric space (typically a cube in Rd)
from some probability distribution, and edges are added be-
tween all pairs of points within distance r to each other. The
Erdős–Rényi random graphs and random geometric graphs
exhibit similar behavior for the Poisson degree distribution;
however, other properties, such as the clique number and
phase transition (w.r.to p or to r), could be very different
[11, 18, 17, 13]. This model has many applications in real
world where the physical locations play an important role
(e.g, transportation networks [2]).

We are interested in mixed models that “combine” both
types of randomness together. One way to achieve this is
to add Erdős–Rényi type perturbation (percolation) to ran-
dom geometric graphs. Although these graphs are related
to the continuum percolation theory [14], our understand-
ing about them so far is still limited: In previous studies,
the underlying spaces are typically plane[4] and cubes [7];
the vertices are often chosen as the lattices of the space; and
the results usually concern the connectivity [5] or diameter
(e.g, [20]).

Cliques in graphs are important objects in many applica-
tion domains (e.g, in PPI networks [19]). The clique num-

ber in Erdős–Rényi random graph has been studied exten-
sively in 20th century [3]. The clique number in random
geometric graph is a relative new topic. It has dramatically
different behaviors when different ranges of r are chosen
[13].

Our work. In this short paper1, we consider a mixed
model of Erdős–Rényi random graphs and random geomet-
ric graphs, and study the behavior of a local property called
edge clique number. More precisely, we use the following
ER-perturbed random geometric graph model previously
introduced in [16]. Suppose there is a compact metric space
X = (X, d) (as feature space) with a probability distribu-
tion induced by a “nice” measure µ supported on X (e.g,
the uniform measure supported on an embedded smooth
low-dimensional Riemannian manifold). Assume we now
randomly sample n points V i.i.d from this measure µ, and
build the random geometric graph G∗X (r), which is the r-
neighborhood graph spanned by V (i.e, two points u, v ∈ V
are connected if their distance d(u, v) ≤ r). Next, we add
Erdős–Rényi (ER) type perturbation to G∗X (r): each edge
inG∗X (r) is deleted with a uniform probability p, while each
“short-cut” edge between two unconnected nodes u, v is in-
serted to G∗X (r) with a uniform probability q. We denote
the resulting generated graph as Ĝp,qX (r).

We introduce a local property called the edge clique num-
ber of a graph G. It is defined for each edge (u, v) in
the graph, denoted as ωu,v(G), as the size of the largest
clique containing uv in graph G. Our main result is that
ωu,v(G) presents two fundamentally different types of be-
haviors. See Theorems 3.2, 3.7, 3.8, and 3.9.

As an application of our theoretical analysis, in Theo-
rem 4.1, we show that by using a filtering process based

1The full version: http://web.cse.ohio-state.edu/

˜tian.394/papers/clique_number_RGG_under_ER_
perturbation.pdf

1

on our edge clique number, we can recover the shortest-
path metric of the random geometric graph G∗X (r) within
a multiplicative factor of 3, from an ER-perturbed graph
Ĝp,qX (r), for a significantly wider range of insertion proba-
bility q than what’s required in [16], although we do need a
stronger condition on the measure µ.

2 Preliminaries

Suppose we are given a compact geodesic metric space
X = (X, d) [6]. We will consider “nice” measures on X .
Specifically,

Definition 2.1 (Doubling measure) Given a metric space
X = (X, d), let Br(x) ⊂ X denotes the closed metric ball
Br(x) = {y ∈ X | d(x, y) ≤ r}. A measure µ : X →
R on X is said to be doubling if every metric ball (with
positive radius) has finite and positive measure and there is
a constant L = L(µ) s.t. for all x ∈ X and every r > 0, we
have µ(B2r(x)) ≤ L · µ(Br(x)). We call L the doubling
constant and say µ is an L-doubling measure.

For our theoretical results later, we in fact need a stronger
condition on the input measure, which we will specify later
in Assumption-A at the beginning of Section 3.

ER-perturbed random geometric graph. Following
[16], we consider the following random graph model:
Given a compact metric space X = (X, d) and a L-
doubling probability measure µ supported on X , let V be
a set of n points sampled i.i.d. from µ. We build the
r−neighborhood graph G∗X (r) = (V,E∗) for some param-
eter r > 0 on V ; that is, E∗ = {(u, v) | d(u, v) ≤ r, u, v ∈
V }. We call G∗X (r) a random geometric graph generated
from (X , µ, r). Now we add the following two types of
random perturbations:

p-deletion: For each existing edge (u, v) ∈ E∗, we delete
edge (u, v) with probability p.

q-insertion: For each non-existent edge (u, v) /∈ E∗, we
insert edge (u, v) with probability q.

The final graph Ĝp,qX (r) = (V, Ê) is called a (p, q)-
perturbation of G∗X (r), or simply an ER-perturbed random
geometric graph.

Definition 2.2 (Edge clique number) Given an arbitrary
graph G = (V,E), for any edge (u, v) ∈ E, its edge clique
number ωu,v(G) is defined as:

ωu,v(G) = the size of the largest clique(s) in G contain-
ing (u, v).

Setup for the remainder of the paper. In what follows,
we fix the compact geodesic metric space X = (X, d),
the L-doubling probability measure µ, and the set of n
graph nodes V sampled i.i.d from µ. The input is a (p, q)-
perturbation Ĝ = Ĝp,qX (r) = (V, Ê) of a random geometric
graph G∗ = G∗X (r) spanned by V with radius parameter r.
For an arbitrary graph G, let V (G) and E(G) refer to its
vertex set and edge set, respectively, and let NG(u) denote
the set of neighbors of u in G.

Definition 2.3 (Good / bad-edges) An edge (u, v) in the
perturbed graph Ĝ is a good-edge if d(u, v) ≤ r. An edge
(u, v) in the perturbed graph Ĝ is a bad-edge if for any
x ∈ NG∗(u) and y ∈ NG∗(v), we have d(x, y) > r.

Our main result Theorem 3.9 roughly suggests, un-
der certain conditions on the insertion probability q, for
a good-edge (u, v) of Ĝp,qX (r), with high probability,

ωu,v

(
Ĝ
)

has order Ω
(

log1/(1−p) lnn
)

; while for a bad-

edge (u, v), its edge-clique number ωu,v
(
Ĝ
)

has order

o
(

log1/(1−p) lnn
)

with high probability.
All the missing proofs can be found in the full version.

3 Two different behaviors of edge clique
number

For technical reasons, we need an assumption on the pa-
rameter r (for the random geometric graph G∗X (r)), as well
as a condition on the measure µ where graph nodes V are
sampled from.

[Assumption-A]: The parameter r and the doubling mea-
sure µ satisfy the following condition:

There exist s ≥ 13 lnn
n

(
= Ω(lnn

n)
)

and a constant ρ
such that for any x ∈ X

(Density-cond) µ
(
Br/2(x)

)
≥ s.

(Regularity-cond) µ
(
Br/2(x)

)
≤ ρs

Density-cond is equivalent to the Assumption-R in [16].
It intuitively requires that r is large enough such that with
high probability each vertex v in the random geometric
graph G∗X (r) has degree Ω(lnn). Indeed, the following is
already known.

2

Claim 3.1 ([16]) Under Density-cond, with probability at
least 1 − n−5/3, each vertex in G∗X (r) has at least sn/4
neighbors.

3.1 Insertion-only perturbation

First, for good-edges, we have the following result.

Theorem 3.2 Assume Density-cond holds. Let Ĝ = Ĝq

denote the final graph after inserting each edge not in G∗

independently with probability q. Then, with high probabil-
ity, for each good-edge (u, v) in Ĝ, its edge clique number
satisfies that ωu,v(Ĝ) ≥ sn/4.

Bounding the edge clique number for bad-edges is much
more challenging, due to the interaction between local
edges (from random geometric graph) and long-range edges
(from random insertions). To handle this, we will create
a specific collection of subgraphs for Ĝ in an appropriate
manner, and bound the edge clique number of a bad-edge in
each such subgraph. The property of this specific collection
of subgraphs is that the union of these individual cliques
provides an upper bound on the edge clique number for this
edge in Ĝ. To construct this collection of subgraphs, we
will use the so-called Besicovitch covering lemma which
has a lot of applications in measure theory [9].

First, we introduce some notations. We use a packing to
refer to a countable collection B of pairwise disjoint closed
balls. Such a collection B is a packing w.r.t. a set P if
the centers of the balls in B lie in the set P ⊂ X , and it
is a δ-packing if all of the balls in B have radius δ. A set
{A1, . . . , A`}, Ai ⊆ X , covers P if P ⊆ ⋃iAi.

Theorem 3.3 (Besicovitch Covering Lemma[12]) Let
X = (X, d) be a doubling space. Then, there exists a
constant β = β(X) ∈ N such that for any P ⊂ X and
δ > 0, there are β number of δ-packings w.r.t. P , denoted
by {B1, · · · ,Bβ}, whose union also covers P.

We call the constant β(X) above the Besicovitch con-
stant. Given a set P , we say that A is partitioned into
A1, A2, · · · , Ak, if A = A1∪ · · ·∪Ak and Ai∩Aj = ∅ for
any i 6= j.

Definition 3.4 (Well-separated clique-partitions family)
Consider the random geometric graph G∗ = G∗X (r). A
family P = {Pi}i∈Λ, where Pi ⊆ V and Λ is the index set
of Pis, forms a well-separated clique-partitions family of
G∗ if:

1. V = ∪i∈ΛPi.

2. ∀i ∈ Λ, Pi can be partitioned as Pi = C
(i)
1 t C

(i)
2 t

· · · t C(i)
mi where

(2-a) ∀j ∈ [1,mi], ∃v̄(i)
j ∈ V such that C(i)

j ⊆
Br/2

(
v̄

(i)
j

)
∩ V .

(2-b) ∀j1, j2 ∈ [1,mi] with j1 6= j2,
dH

(
C

(i)
j1
, C

(i)
j2

)
> r, where dH is the Hausdorff

distance between two sets in metric space
(X, d).

We also call C(i)
1 tC

(i)
2 t · · · tC

(i)
mi a clique-partition of Pi

(w.r.t. G∗), and its size (cardinality) is mi. The size of the
well-separated clique-partitions family P is its cardinality
|P| = |Λ|.

By applying Theorem 3.3, we have the following lemma.

Lemma 3.5 There is a well-separated clique-partitions
family P = {Pi}i∈Λ ofG∗ with |Λ| ≤ β2, where β = β(X)
is the Besicovitch constant of X .

Using Chernoff bound and the Assumption-A, we can
also upper-bound the number of points in every r/2-ball
centered at nodes of G∗, which further upper-bounds the
number of points in each clique of a well-separated clique-
partition.

Claim 3.6 Given an n-node random geometric graph
G∗ = (V,E∗) generated from (X , µ, r), if Assumption-
A holds, then with probability at least 1 − n−5, for every
v ∈ V , the ball Br/2(v) ∩ V contains at most 3ρsn points.

By using the well-separated clique-partition technique,
one can prove the following theorem.

Theorem 3.7 Suppose Assumption-A holds. Let Ĝ = Ĝq

denote the graph obtained by inserting each edge not in
G∗ independently with probability q. Then there exist
constants c1, c2, c3 > 0 which depend on the doubling
constant L of µ, the Besicovitch constant β(X), and the
regularity constant ρ, such that for any K = K(n) with
K → ∞ as n → ∞, with high probability, ωu,v(Ĝ) < K

for any bad-edge (u, v) in Ĝ, as long as q satisfies
q ≤ min

{
c1, c2 ·

(
1
n

)c3/K · K
sn

}
.

3

Remark. Consider for example when K = Θ(sn). Then
the theorem says that there exists constant c′ such that if
q < c′, then w.h.p. ωu,v < K (thus ωu,v = O(sn)) for
any bad-edge (u, v). Now consider when q = o(1). Then
the theorem implies that w.h.p. the edge-clique number for
any bad-edge is at most K = o(sn). This is qualitatively
different from the edge-clique number for a good-edge for
the case q = o(1), which is Ω(sn) as shown in Theorem
3.2. By reducing this insertion probability q, this gap can
be made larger and larger.

3.2 Deletion-only perturbation

We now assume that the input graph Ĝ = Ĝp is obtained
by deleting each edge in the random geometric graph G∗

independently with probability p. An observation is that
for any edge (u, v) in G∗, as dX(u, v) ≤ r, we have that
Br(u) ∩ Br(v) must contain a metric ball of radius r/2.
Based on this observation, we have the following theorem.

Theorem 3.8 Assume Density-cond holds. Let Ĝ = Ĝp

denote the final graph after deleting each edge in G∗ in-
dependently with probability p. Then, for any constant
p ∈ (0, 1), with high probability, we have ωu,v(Ĝ) ≥
2
3 log1/(1−p) sn for all edges (u, v) in Ĝ.

3.3 Combined Case

Theorem 3.9 (ER-perturbed random geometric graph)
Assume Assumption-A holds. Let Ĝ = Ĝp,q(r) denote the
graph obtained by removing each edge inG∗ independently
with constant probability p ∈ (0, 1) and inserting each
edge not in G∗ independently with probability q. There
exist constants c1, c2, c3 > 0 which depend on the doubling
constant L of µ, the Besicovitch constant β(X), and the
regularity constant ρ, such that the following holds for any
K = K(n) with K→∞ as n→∞

1. W.h.p., for all good-edges (u, v), ωu,v(Ĝ) ≥
2
3 log1/(1−p) sn.

2. W.h.p., for all bad-edges (u, v), ωu,v(Ĝ) < K as
long as the insertion probability q satisfies q ≤
min

{
c1, c2 ·

(
1
n

)c3/K · K
sn
√

1−p

}

Remark. For example, assume sn = Θ(lnn). Then
for a constant deletion probability p ∈ (0, 1), w.h.p.
the edge clique number for any good-edge is at least
Ω
(

log1/(1−p) sn
)

= Ω(ln lnn). For any bad-edge uv,

if the insertion probably q = o
(

(1
n)

c3
ln lnn

ln lnn
lnn

)
, then

its edge clique number is at most o
(

log1/(1−p) sn
)

=

o(ln lnn) w.h.p..

4 Recover the shortest-path metric of
G∗(r)

In this section, we show an application in recovering the
shortest-path metric structure of G∗X (r) from an input ob-
served graph Ĝp,qX (r), which was introduced in [16].

Specifically, given two different metrics defined on the
same space (Y, d1) and (Y, d2), we say that d1 ≤ α · d2 if
for any two points y1, y2 ∈ Y , we have that d1(y1, y2) ≤
α · d2(y1, y2). The metric d1 is an α-approximation of d2 if
1
α · d2 ≤ d1 ≤ α · d2 for α ≥ 1.

Our edge-clique based filtering process is the following.

τ -Clique filtering: Given graph Ĝ, we construct another graph
G̃τ on the same vertex set as follows: For each edge
(u, v) ∈ E(Ĝ), we insert the edge (u, v) into E(G̃τ) if
and only if ωu,v(Ĝ) ≥ τ .

The following result can be proved by almost the same
argument as that for Theorem 12 of [16], with the help of
Theorem 3.9.

Theorem 4.1 Assume Assumption-A holds. Let G̃τ de-
note the resulting graph after τ -Clique filtering. Then
there exist constants c1, c2, c3 > 0 which depend on the
doubling constant L of µ, the Besicovitch constant β(X),
and the regularity constant ρ, such that if p ∈ (0, c0),
τ ≤ 2

3 log1/(1−p) sn, and q ≤ c2 ·
(

1
n

)c3/τ · τ
sn
√

1−p , then,
with high probability, the shortest-path metric dG̃τ is a 3-
approximation of the shortest-path metric dG∗ of G∗.

However, if the deletion probability p = 0, then we have
w.h.p. that dG̃τ is a 3-approximation of dG∗ as long as τ <
sn
4 , and q ≤ min

{
c1, c2 ·

(
1
n

)c3/τ · τsn
}

.

Remark. Consider the insertion-only case. If we choose
τ = lnn and assume that sn > 4τ , then w.h.p. we can
recover the shortest-path metric within a factor of 3 as long
as q ≤ c lnn

sn for some constant c > 0. If sn = Θ(lnn) (but
sn > 4τ = 4 lnn), then q is only required to be smaller
than a (sufficiently small) constant. If sn = lna n for some
a > 1, then we require that q ≤ c

lna−1 n
. In constrast, the

work of [16] requires that q = o(s), which is q = o(lnc n
n)

if sn = lna n with a ≥ 1. The gap (ratio) between these
two bounds is nearly a factor of n.

4

References

[1] Noga Alon and Joel H. Spencer. The Probabilistic
Method. Wiley Publishing, 4th edition, 2016.

[2] Philippe Blanchard and Dimitri Volchenkov. Mathe-
matical analysis of urban spatial networks. Springer
Science & Business Media, 2008.

[3] Béla Bollobás and Paul Erdös. Cliques in random
graphs. In Mathematical Proceedings of the Cam-
bridge Philosophical Society, volume 80, pages 419–
427. Cambridge University Press, 1976.

[4] Béla Bollobás and Oliver Riordan. Percolation. Cam-
bridge University Press, 2006.

[5] L Booth, J Bruck, M Cook, and M Franceschetti. Ad
hoc wireless networks with noisy links. In Informa-
tion Theory, 2003. Proceedings. IEEE International
Symposium on, pages 386–386. IEEE.

[6] Martin R Bridson and André Haefliger. Metric spaces
of non-positive curvature, volume 319. Springer Sci-
ence & Business Media, 2011.

[7] Don Coppersmith, David Gamarnik, and Maxim
Sviridenko. The Diameter of a Long-Range Percola-
tion Graph, pages 147–159. Birkhäuser Basel, Basel,
2002.

[8] Martin Doležal, Jan Hladkỳ, and András Máthé.
Cliques in dense inhomogeneous random graphs.
Random Structures & Algorithms, 2017.

[9] Herbert Federer. Geometric measure theory. Springer,
2014.

[10] Edward N Gilbert. Random plane networks. Journal
of the Society for Industrial and Applied Mathematics,
9(4):533–543, 1961.

[11] Piyush Gupta and Panganamala R Kumar. Critical
power for asymptotic connectivity in wireless net-
works. In Stochastic analysis, control, optimization
and applications, pages 547–566. Springer, 1999.

[12] Antti Kaenmaki, Tapio Rajala, and Ville Suomala. Lo-
cal homogeneity and dimensions of measures. AN-
NALI DELLA SCUOLA NORMALE SUPERIORE DI
PISA-CLASSE DI SCIENZE, 16(4):1315–1351, 2016.

[13] Colin McDiarmid and Tobias Müller. On the chro-
matic number of random geometric graphs. Combi-
natorica, 31(4):423–488, 2011.

[14] Ronald Meester and Rahul Roy. Continuum percola-
tion, volume 119. Cambridge University Press, 1996.

[15] Mark EJ Newman. Random graphs as models of net-
works. Handbook of Graphs and Networks: From the
Genome to the Internet, pages 35–68.

[16] Srinivasan Parthasarathy, David Sivakoff, Minghao
Tian, and Yusu Wang. A quest to unravel the metric
structure behind perturbed networks. In 33rd Interna-
tional Symposium on Computational Geometry, SoCG
2017, July 4-7, 2017, Brisbane, Australia, pages 53:1–
53:16, 2017.

[17] Mathew Penrose. Random geometric graphs. Num-
ber 5. Oxford University Press, 2003.

[18] Mathew D. Penrose. The longest edge of the random
minimal spanning tree. Ann. Appl. Probab., 7(2):340–
361, 05 1997.

[19] Sriganesh Srihari, Chern Han Yong, and Limsoon
Wong. Computational Prediction of Protein Com-
plexes from Protein Interaction Networks. Morgan &
Claypool, 2017.

[20] Xian Yuan Wu. Mixing time of random walk on
poisson geometry small world. Internet Mathematics,
2017.

5

Lower Bounds for Indexing the k-Nearest Neighbor Problem
Paul Cesaretti

Queens College, CUNY
Flushing, New York

paul.cesaretti@qc.cuny.edu

Mayank Goswami
Queens College, CUNY
Flushing, New York

mayank.goswami@qc.cuny.edu

ABSTRACT
Similarity search for high dimensional data has been a major re-
search problem for the last three decades. However, most of the
techniques for dealing with similarity search in both its approxi-
mate and exact setting do not scale well to external memory. We
consider the problem of constructing efficient indexing methods
for the k-nearest neighbor problem (k-NN). Using the theoretical
framework for space-query tradeoff of an indexing scheme for ex-
ternal memory developed by Hellerstein et al. [19], [20], we show
that the k-NN problem is isomorphic to a general family of set
workloads, namely the λ-set workload, implying that k-NN shares
the same lower bounds. The theory of indexability puts these lower
bounds in terms of storage redundancy r , the number of times each
item in the data set is stored, and access overhead A, the number
of blocks that a query retrieves. Our results imply that if k = Θ(1),
N = |I | is the size of the instance of the indexing scheme, and B is
the size of the block, then in order to get access overhead less than
k (meaning for k-NN queries to take fewer than k I/Os in the worst
case), r would have to be Ω(N /B), implying that the space would
have to be Ω((N /B)2). We prove this result for both Euclidean and
Hamming metric spaces. Furthermore, though lower bounds have
been found for the nearest neighbor problem (k = 1), and despite
the results of Chakrabarti et al. [13] and Barkol and Rabani [7] who
found lower bounds in the cell probe model, these do not consider
I/O nor do they apply directly to the k-NN problem.

1 INTRODUCTION
The relational database model developed by E.F. Codd in 1970 [14],
which has served as the standard for most commercial database
management systems owes much of its ubiquity to the development
of an effective access method, the B-tree [15]. However, despite its
extended use and success, the B-tree is inadequate for many novel
database schemes, which has led much research in the database
community around the development of new indexing methods to
solve domain specific problems. For example, a survey by Gaede
and Günther [17] cites over 50 different multidimensional access
methods for spatial databases, implying that no one, general method
is capable of accommodating the wide range of applications and
requirements for contemporary information systems. Moreover,
analytic research on these structures have focused on their average-
case performance under various data sets and query distributions.
This highlights the need to develop methods that can be used to
analyze the viability of particular indexing scheme in terms of its
performance and limitations, a priori.

Hellerstein et al. 1995 proposed and implemented a "generalized
indexing" scheme [21] allowing new data types to be indexed in a
manner that makes queries natural for its type. Called the Gener-
alized Search Tree (GiST), it attempts to provide extensibility for

new data types as well as provide a common code base for indexing
structures used for disparate application domains; as such, imple-
mentations of the GiST exist that are able to function as either a
B-tree, R-tree or RD-tree. The main theoretical question is whether
a general framework exists to access the practicality of indexing
arbitrary domains, both standard and non-standard.

The authors followed this work with a theory of indexability [19],
which characterizes the hardness of indexing data sets on block
memory devices. The theory singles out two measures of efficiency
for an indexing scheme on a workload: storage redundancy and
access overhead, where storage redundancy describes the number of
times an item in the data set is stored in the indexing scheme, and
access overhead describes how many more blocks than necessary
are needed to answer the query. Both are expressed solely in terms
of a parameter B, the block size. The workload then serves the same
purpose as that of recursive languages in computability theory: as
the unit on which a particular indexing scheme can be character-
ized. By defining a workload in such sparse terms, the approach
neglects many important concerns in constructing any indexing
scheme, namely the algorithm needed to determine which blocks
within the index cover the query as well as the storage and retrieval
costs of the algorithm or any auxiliary data structures. Furthermore,
the model also ignores the dynamic aspect of the indexing problem,
so the costs of insertion or deletion are not considered. These omis-
sions are justified since the authors are primarily concerned with
a theory that is capable of finding lower bounds that characterize
common workloads. The theory is applied to examine the trade
offs between storage redundancy and access overhead between two
common family of workloads: two-dimensional range queries and
set inclusion queries.

An important workload that we would like to consider is nearest
neighbor search. That is, given a set P of points in high-dimensional
space, construct a data structure, which, given any query point
q, finds the point p ∈ P closest to q. The problem is important
to many areas of computer science, for example networking[12],
file systems [9], data mining [11], machine learning and vision
[28], pattern recognition [8], analysis [3],[4],[8], and optimization
[2], [16], [22]. The basic problem is to perform similarity search
for a query, where these objects consist of many features which
represent the dimensions of the space being considered; for example
an image of 1000 x 1000 pixels can be represented as a 1,000,000
dimensional vector [4]. Similarity indices for high dimensional
data have been a major research problem for the last three decades
[23], [3], [25], [27], [24], [10]. The major difficulty in constructing
efficient algorithms for nearest neighbor search is that their space
and time requirements grow as exponentially in the dimension
[18], referred to as the curse of dimensionality. The most effective
approach developed by Indyk and Motwani in 1998 loosens the
requirements on finding the closest point p ∈ P to the query to

finding a point whose distance to the query q is an (1 + ϵ) factor
away from q to closet point p [23]. However, the techniques for
dealing with similarity search in both its approximate and exact
setting work in main memory; none scale well to external memory.
As data set become increasingly large, knowing what limits exist for
constructing indexing schemes for external memory are becoming
paramount.

1.1 Our Results
We work in the indexability model of Hellerstein et al. [19] and de-
rive lower bounds on the EuclideanRd and theHamming {−1/

√
d, 1/

√
d}d

versions of the k-NN problem. Our main result (Theorem 3.1 in
Section 3) translated from indexability model language is the fol-
lowing.

Theorem 1.1 (Main result (informal)). Let d ∈ ω(k2 logn).
Consider the Euclidean-Rd or Hamming-{−1/

√
d, 1/

√
d}d versions

of the k-NN problem for k ≤ B. Any indexing scheme that has worst
case query time at most k−1 I/Os must use Ω((N /B)2) blocks of space
on disk.

Remarks

(1) Notice that the nearest neighbor problem (k = 1) gives trivial
lower bounds in the indexability model since the block con-
taining the answer to the query is given for free; the search
aspect is completely removed from consideration, and the
algorithm would return the block in one I/O. There are sev-
eral approximate data structures for the nearest neighbor
problem that use subquadratic space [23],[5]. In the latest
paper, Andoni et al. [5] build upon the recent work on data-
dependent hashing, and find a tradeoff between the space and
query which is optimal in the sense that no list-of-points data
structure can do better (note that this captures all hashing-
based approaches). And although Chakrabarti et al. [13] and
Barkol and Rabani [7] have applied the cell probe model [29]
to the nearest neighbor problem, these lower bounds do not
apply directly to the k-NN problem nor do they give any I/O
or indexability lower bounds.

(2) If N is large and super-quadratic space is prohibitive, our
result means that the queries will be slow in the worst case.
However, our “bad dataset” is randomly drawn. We believe
(as a result of our lower bound) that structured datawill likely
not suffer from this lower bound, and we leave exploiting
the structure in a dataset to reduce the query time for future
work.

(3) We leave the task of exploring the space-query tradeoff in
other metric spaces (such as Hamming {0, 1}d) to future
work.

The rest of the paper is organized as follows: In section 2 we define
the external memory and indexability models, describe the concepts
of an indexing scheme and the metrics that are used to analyze
its performance, and define the set workload and the k-nearest
neighbor problem. In section 3, we state our main result and prove
that k-nearest neighbor problem, in both the Euclidean Rd and
Hamming metric, is an instance of the set workload, described in
section 2. In section 4, we state the implications of our results.

2 PRELIMINARIES
In this section we briefly describe the external memory model
(due to Aggarwal and Vitter [1]), the indexability model (due to
Hellerstein et al. [19], [20]), the set workload, and our problem.

Definition 2.1 (External Memory Model). In the external memory,
or DAM (disk access machine) model, there is main memory of size
M , and an infinite external memory, both realized as arrays. The
data is stored in external memory, and is transferred to/from main
memory for computation in I/Os or block transfers. If the block
size is B, one I/O loads (writes) B consecutive elements in the array
from (to) external memory to (from) main memory. The cost of
an algorithm in the I/O model is described solely by the number
of I/Os performed, and computation once data is inside the main
memory is considered free.

All of the following material in this section is taken from Heller-
stein et al. [19], [20].

Definition 2.2 (Workload). AworkloadW is a tupleW = (D, I ,Q),
where D is a non-empty set (the domain), I ⊆ D is a nonempty
finite set (the instance, whose size we denote by N), and Q is a set
of subsets of the instance I (the query set).

Definition 2.3 (Indexing Scheme). An indexing scheme is a pair
S = (W , β), whereW = (D, I ,Q) is a workload and β is a set of
B-subsets of I such that B is some positive integer and β covers I .

Basically, an indexing scheme is a way to lay out the data on the
disk in blocks so as to answer queries efficiently. In the indexability
model, once the query q ∈ Q arrives, there is an oracle that tells
the algorithm exactly which blocks on disk contain the elements in
q for free (here we use q both for the query and for its “answers”,
as we don’t have to search for them). Ideally, we want indexing
schemes that are space-efficient and do not perform too many I/Os
to bring in these |q | elements from memory. This is captured by the
following two performance parameters.

Definition 2.4 (Redundancy). The redundancy r (x) of a data item
x ∈ I is defined as the number of blocks b in the block set β that
contain x :

r (x) = |{b ∈ β : x ∈ b}|.

The redundancy r of the indexing scheme S is defined as the
average of r (x) over all objects x , i.e., r = 1

N
∑
x ∈I r (x). If the space

used by the indexing scheme is S blocks, it turns out that S = rN /B.

The redundancy ranges from 1 (with S = N /B blocks, the mini-
mum required to store the data), to

(N
B
)
/(N /B) (corresponding to

S =
(N
B
)
, where every B-combination of the input data is written

out to a block).

Definition 2.5 (Cover set). A set of blocks U ⊆ β covers a query
q ∈ Q iff q ⊆

⋃
b ∈β

b.Furthermore, a cover set, Cq ⊆ β for a query

q ∈ Q is a minimum-size set of the blocks that cover Q .

Definition 2.6. The access overhead A(q) of a query q ∈ Q is
defined as:

A(q) =
Cq

⌈|q |/B⌉
.

2

Definition 2.7 (Access Overhead). The access overhead A for an
indexing scheme S is defined as A = max

q∈Q
A(Q).

Given a query q, any indexing scheme must make at least⌈|q |/B⌉
I/Os to answer q. Intuitively, if the access overhead of an indexing
scheme is A, then for some query q, the scheme requires A⌈|q |/B⌉
I/Os to answer q.

2.1 Set Workload
Definition 2.8. The λ-set workload Kn,λ is a workload whose

instance is {1, · · · ,n},and whose query set is the set of all λ-subsets
of the instance.

Clearly, if λ ≤ B, the best indexing scheme will have access
overhead 1, whereas the worst indexing scheme requires λ I/Os,
giving an access overhead of λ/⌈λ/B⌉ = B

Theorem 2.9. [19, Theorem 7.2] For λ-set workloadKn,λ(I ,Q),B ≥

λ, any indexing scheme with redundancy

r <
n − λ + 1

(λ − 1)(B − 1)
has worst possible access overhead A = λ.

The above theorem says that if an indexing scheme is to avoid the
worst possible access overhead, it must use space at least quadratic
in N /B.

2.2 k-Nearest Neighbor Problem
Definition 2.10. k-Nearest Neighbor Problem: Given a set P =

{p1, · · · ,pn } of n points, where pi belongs to a metric space M =
(X ,d) , and a query q, return a set K = {t1, · · · , tk } of k points from
P such that for any p ∈ P \K then d(q, ti) < d(q,p), for all 1 ≤ i ≤ k

3 OUR RESULT: THE LOWER BOUND
In our main result we show that the k-nearest neighbor problem is
an instance of the λ-set workload. We can thus use Theorem 2.9 to
prove Theorem 3.1. To do so we construct a point set P containing
N such that given any λ and any one of λ-subsets of P , we show that
there exists a queryq whose k-nearest neighbors are precisely those
λ points. This would demonstrate that a query could potentially
require the indexing scheme to bring in any λ subset of P , which
means that the k−NN problem is the same as theKn,λ set workload
problem. This is stated formally as:

Theorem 3.1. Let d > 16(λ + 1)2 logn. Then, a) there exists a set
P ⊂ Rd , |P | = N , such that for any subset L ⊂ P , |L| = λ, there exists
a point q ∈ Rd such that ∀ℓ ∈ L and ∀p ∈ P \ L, d(q, ℓ) < d(q,p),
where d() denotes the Euclidean distance, and

b) there exists a set P ⊂ {−1/
√
d, 1/

√
d}d , |P | = N , such that for

any subset L ⊂ P , |L| = λ, there exists a point q ∈ {−1/
√
d, 1/

√
d}d

such that ∀ℓ ∈ L and ∀p ∈ P \ L, d(q, ℓ) < d(q,p), where d() denotes
the Hamming distance.

The rest of this section is devoted to the proof. We state the
following lemma, which says that as long as the dimensiond is large,
there are vectors that are almost orthogonal with high probability.
Here orthogonality is with respect to the usual inner product for
vectors. This result seems to be be folklore but we provide a proof
here for the sake of completeness.

Lemma 3.2. a) Let P be a set of N vectors drawn uniformly from
the surface of the d dimensional sphere Sd−1. Then

Pr[∀i, j, |⟨pi ,pj ⟩| ≤ ϵ] ≥ 1 − N 2e−ϵ
2d/2.

b) Let P = {p1, · · · ,pn } ⊂ {−1/
√
d, 1/

√
d}d , where pi is chosen

randomly in such a way that each coordinate of pi is either −1/
√
d

or 1/
√
d with equal probability. Then

Pr[∀i, j, |⟨pi ,pj ⟩| ≤ ϵ] ≥ 1 − N 2e−ϵ
2d/2.

Proof. First we notice that the distribution of ⟨pi ,pj ⟩ where pi
and pj are drawn uniformly (from either of the two metric spaces)
is the same as that of ⟨v,pi ⟩, where v is a fixed vector.

For part a), define C(v, ϵ) = {u ∈ Sd−1 : ⟨u,v⟩ ≥ ϵ}. Lemma
2.2 in [6] states that the normalized volume of C(v, ϵ) is at most
e−dϵ

2/2. This directly proves a).
To prove b), we apply Hoeffding’s inequality [26, p. 77]. We

abbreviate p = pi for now. Then ⟨v,pi ⟩ = ⟨v,p⟩ =
∑d
i=1vipi ,

where for all 1 ≤ i ≤ d , pi is randomly chosen between −1/
√
d and

1/
√
d . Thus we have that E⟨v,p⟩ =

∑d
i=1vi .E[pi], which equals

zero since E[pi] = 0.
To apply Hoeffding’s inequality, set Xi = vipi . Note that −1/d ≤

Xi ≤ 1/d . Clearly, X = ⟨v,p⟩ =
∑
i Xi . Thus we have that

Pr
[
|
∑
i
Xi | > ϵ

]
< exp

(
−2ϵ2

2
∑d
i=1(2/d)2

)
= e−ϵ

2d/2,

which proves part b) of the Lemma. □

Wenow showhow to complete the proof of Theorem 3.1. Lemma 3.2
states that if vectors are chosen randomly, they are almost orthog-
onal with at least a certain probability. Set ϵ = 1/(2(λ + 1)). Then
one can check that if d > 16(λ + 1)2 logn (which is a hypothesis
of Theorem 1.1), then 1 − N 2e−ϵ

2d/2 > 0. Since this probability is
strictly positive, this means there must exist a point set P∗ (in both
metric spaces) such that for any pi ,pj ∈ P∗, |⟨pi ,pj ⟩| ≤ 1/(2(λ+1)).
This P∗ is the instance of our workload for the λ-NN problem.

Now assume we are given a subset L ⊂ P∗ of size |L| = λ. We will
prove part a) of Theorem 3.1, as the proof of part b) is essentially
the same.

Given L = {ℓ1, · · · , ℓλ }, let q = (1/λ)
∑λ
i=1 ℓi . We claim that for

any p ∈ P \ L and any ℓi ∈ L, d(q,p) > d(q, ℓi). This would prove
that the ℓi s are indeed the λ-nearest neighbors of q in P , and since
the choice of L was arbitrary, establishes that this is essentially the
same as KN ,λ-set workload.

To prove d(q,p) > d(q, ℓi), notice that it suffices to prove that
⟨q,p⟩ < ⟨q, ℓi ⟩, because that implies the following chain of inequal-
ities (recall that p, ℓi ∈ Sd−1)

−2⟨q,p⟩ < −2⟨q, ℓi ⟩ ⇒ ∥q∥2 + 1 − 2⟨q,p⟩ < ∥q∥2 + 1 − 2⟨q, ℓi ⟩
⇒ ∥q∥2 + ∥p∥2 − 2⟨q,p⟩ < ∥q∥2 + ∥ℓi ∥

2 − 2⟨q, ℓi ⟩
⇒ ⟨q − p,q − p⟩ < ⟨q − ℓi ,q − ℓi ⟩

⇒ d(q,p) < d(q, ℓi)

Lemma 3.3. Let P∗,q,p,L and ℓi be as above. Then ⟨q,p⟩ ≤ 1/2(λ+
1), and ⟨q, ℓi ⟩ > 1/λ − (λ − 1)/(λ(2(λ + 1))).

3

Proof. ⟨q,p⟩ = ⟨
∑
j ℓj/λ,p⟩ = (1/λ)

∑
j ⟨ℓj ,p⟩. Now because

p, ℓj ∈ P∗, and vectors in P∗ have (absolute value of) pairwise inner
product at most 1/2(λ+ 1), we get that (1/λ)

∑
j ⟨ℓj ,p⟩ ≤ 1/2(λ+ 1).

Similarly ⟨q, ℓi ⟩ = (1/λ)
∑
j ⟨ℓj , ℓi ⟩. Now for any 1 ≤ j , i ≤

λ, ⟨ℓj , ℓi ⟩ > −1/2(λ + 1). Hence we have that (1/λ)
∑
j ⟨ℓj , ℓi ⟩ >

(1/λ)(1−
∑
j,i ⟨ℓj , ℓi)⟩, which is greater than (1/λ)−(λ−1)/(λ(2(λ+

1))). □

One can now check that ⟨q, ℓi ⟩ > 1/λ − (λ − 1)/(λ(2(λ + 1))) >
1/λ − 1/(2(λ + 1)) > 1/λ − 1/2λ > 1/2(λ + 1) > ⟨q,p⟩, and this
completes the proof of Theorem 1.1.

Combining with Theorem 2.9 about the redundancy-access over-
head tradeoff for indexing schemes for set-workload, we get a
redundancy-access overhead for indexing schemes for the λ-NN
problem:

Theorem 3.4. Consider any indexing scheme for the k-NN prob-
lem, where k ≤ B. If the redundancy r < (N −k + 1)/((k − 1)(B − 1)),
then the indexing scheme has worst case access overhead A = k .

If k = Θ(1), then the result says that in order to get access
overhead less than k (meaning for k-NN queries to take fewer than
k I/Os in the worst case), r would have to be Ω(N /B), implying that
the space would have to be Ω((N /B)2).

4 CONCLUSION
A viable and informative theory of indexability can be used to
judge the efficacy of future external memory indices without the
need of extensive experimentation on various data sets and query
distributions. The work of Hellerstein et al. [19], [20] developed a
framework that, though it omits consideration of algorithms needed
to determine which blocks within the index cover a query as well
as the storage and retrieval cost of the algorithm and auxiliary data
structures, focuses on two measures, storage redundancy and access
overhead, which are described exclusively in terms of a parameter,
B, the block size. We apply the theory to an important problem,the
k-nearest neighbor search, which is member of a larger class of
proximity search problems, and show that we can get an instance
of k-NN that is isomorphic to the λ-set workload. While our result
shows that efficient indexing is in general not possible, it still leave
open the hope that for structured data one may be able to get better
indexing schemes. Another future work is to extend our results to
other metric spaces.

5 ACKNOWLEDGEMENTS
The authors acknowledge support from NSF (Award ID 1755791).
The authors would also like to thank Rasmus Pagh from IT Univer-
sity of Copenhagen for all his thought provoking discussions.

KEYWORDS
indexing, nearest neighbours search

REFERENCES
[1] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related

problems. Communications of the ACM, pages 1116–1127.
[2] Z. Allen Zhu, Y. Yuan, and K. Sridharan. Exploiting the structure: Stochastic

gradient methods using raw clusters. CoRR, abs/1602.02151, 2016.
[3] A. Andoni. Nearest neighbor search: the old, the new, and the impossible. PhD

thesis, Massachusetts Institute of Technology, 2009.

[4] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. In Proceedings of the 47th Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS ’06, pages 459–468,Washington,
DC, USA, 2006. IEEE Computer Society.

[5] A. Andoni, T. Laarhoven, I. P. Razenshteyn, and E. Waingarten. Optimal hashing-
based time-space trade-offs for approximate near neighbors. In Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 47–66, 2017.

[6] K. Ball et al. An elementary introduction to modern convex geometry. Flavors of
geometry, 31:1–58, 1997.

[7] O. Barkol and Y. Rabani. Tighter lower bounds for nearest neighbor search and
related problems in the cell probe model. J. Comput. Syst. Sci., 64(4):873–896,
June 2002.

[8] R. Basri, T. Hassner, and L. Zelnik-Manor. Approximate nearest subspace search.
IEEE Trans. Pattern Anal. Mach. Intell., 33(2):266–278, Feb. 2011.

[9] M. Bender, M. Farach-Colton, R. Johnson, B. C. Kuszmaul, D. Medjedovic,
P. Montes, P. Shetty, R. P. Spillane, and E. Zadok. Don’t trash: How to cache
your hash on flash. In The Proceedings of the VLDB Endowment (PVLDB), pages
1627–1637, 2012.

[10] S. Berchtold, C. Böhm, D. A. Keim, and H.-P. Kriegel. A cost model for nearest
neighbor search in high-dimensional data space. In PODS, 1997.

[11] P. Berkhin. A survey of clustering data mining techniques. In Grouping Multidi-
mensional Data - Recent Advances in Clustering, pages 25–71. 2006.

[12] A. Broder, M. Mitzenmacher, and A. B. I. M. Mitzenmacher. Network applications
of bloom filters: A survey. In Internet Mathematics, pages 636–646, 2002.

[13] A. Chakrabarti and O. Regev. An optimal randomised cell probe lower bound
for approximate nearest neighbour searching. In Proceedings of the 45th Annual
IEEE Symposium on Foundations of Computer Science, FOCS ’04, pages 473–482,
Washington, DC, USA, 2004. IEEE Computer Society.

[14] E. F. Codd. A relational model of data for large shared data banks. In Communi-
cations of ACM, volume 13, pages 377–387. ACM, 2000.

[15] D. Cromer. Ubiquitous b-tree. ACM Computing Surveys, 11:121–137, 1979.
[16] I. S. Dhillon, P. Ravikumar, and A. Tewari. Nearest neighbor based greedy

coordinate descent. In Proceedings of the 24th International Conference on Neural
Information Processing Systems, NIPS’11, pages 2160–2168, USA, 2011. Curran
Associates Inc.

[17] V. Gaede and O. Günther. Multidimensional access methods. ACM Computing
Surveys, 30, 1998.

[18] J. Goodman and J. O’Rourke. Handbook of Discrete and Computational Geometry.
CRC Press, 2 edition, 2004.

[19] J. Hellerstein, E. Koutsoupias, D. Miranker, C. Papadimitriou, and S. Vasilis. On
a model of indexability and its bounds for range queries. Journal of the ACM,
49(1):35–55, 2002.

[20] J. Hellerstein, E. Koutsoupias, and C. Papadimitriou. On the analysis of index-
ing schemes. In Proceedings of the sixteenth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems, pages 249–256. ACM, 1997.

[21] J. Hellerstein, J. F. Naughton, and A. Pfeffer. Generalized search tree for database
systems. In Proceedings of the 21th International Conference on Very Large Data
Bases, pages 562–573. ACM, 1995.

[22] T. Hofmann, A. Lucchi, and B. McWilliams. Neighborhood watch: Stochastic
gradient descent with neighbors. CoRR, abs/1506.03662, 2015.

[23] P. Indyk and R. Motwani. Approximate near neighbors: Towards removing the
curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium
on Theory of computing, pages 604–613. ACM, 1998.

[24] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang. idistance: An adaptive
b+-tree based indexing method for nearest neighbor search. ACM Trans. Database
Syst., 30:364–397, 2005.

[25] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-probe lsh: Effi-
cient indexing for high-dimensional similarity search. In Proceedings of the 33rd
international conference on Very large data bases, pages 950–961. ACM, 2007.

[26] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis. Cambridge University Press, New York, NY,
USA, 2005.

[27] T. Seidl and H.-P. Krieger. Optimal multi-step k-nearest neighbor search. In
Proceedings of the 1998 ACM SIGMOD international, pages 154–165. ACM, 1998.

[28] G. Shakhnarovich, T. Darrell, and P. Indyk. Nearest-Neighbor Methods in Learning
and Vision: Theory and Practice (Neural Information Processing). The MIT Press,
2006.

[29] A. C.-C. Yao. Should tables be sorted? J. ACM, 28(3):615–628, July 1981.

4

A Greedy Linear-time Algorithm for the Altitude
Terrain Guarding Problem
Ovidiu Daescu, Hemant Malik
Department of Computer Science, University of Texas at Dallas
{daescu, malik}@utdallas.edu

Christiane Schmidt
Communications and Transport Systems, ITN, Linköping University, Norrköping, Sweden
christiane.schmidt@liu.se

Abstract
We present a simple linear-time greedy algorithm for the problem of guarding an x-monotone
terrain with the minimum number of guards from an altitude line above the terrain.

Keywords and phrases Altitude Terrain Guarding Problem

1 Introduction

A terrain T is an x-monotone chain of line segments in R2 defined by its vertices V (T) =
{v1, . . . , vn} and edges E(T) = {e1, . . . , en−1}, with ei = vivi+1.

In the 1.5D Terrain Guarding Problem (TGP), we are given a terrain T , on which we
have to place a minimum number of point-shaped guards, such that they cover T , i.e.,
each point on T is visible by at least one of the guards. King and Krohn [1] proved the
problem to be NP-hard. Friedrichs et al. [2] considered the problem of guarding a terrain
with guards placed on a horizontal line A above the terrain, the ATGP(T,A): given a
terrain T and an altitude line A = ab, find an optimal guard set G ⊂ A w.r.t. ATGP(T,A).
Let a′ and b′ be the leftmost and rightmost vertices of T , as shown in Figure 1. Joining
a with a′ and b with b′ results in a simple, uni-monotone polygon P (an x-monotone
polygon with a single horizontal segment as one of its two chains). Let VP (p) be the
visibility polygon (VP) of a point p in P , with VP (p) := {q ∈ P | p sees q}. For G ⊂ P

we abbreviate VP (G) :=
⋃

g∈G VP (g). A guard set G ⊂ A is optimal, if G is feasible (that
is, T ⊆ VT (G)) and |G| = OPT(T,A) := min{|C| | C ⊆ A is feasible w.r.t. ATGP(T,A)}.
Friedrichs et al. [2] proved that uni-monotone polygons are perfect, showed that the Altitude
Terrain Guarding Problem (ATGP) and the problem of guarding uni-monotone polygons are
equivalent, and presented an O(n2 log n) time algorithm for both. In his PhD Dissertation [3]
Bengt Nilsson presented a linear time algorithm to compute an optimal set of vision points on
a watchman route in a walkable polygon, a special type of simple polygon that encompasses
spiral and monotone polygons. Being developed for a more general type of polygon, rather
than a uni-modal polygon, Bengt’s algorithm is non-trivial and its proof of correctness
and optimality is complex. In contrast, the algorithm in [2] is simple and elegant, however
it suffers from a suboptimal running time. In this paper we make some observations on
the visibility characterizations in [2] that allow us to obtain a simple, greedy, linear-time
algorithm.

2 Linear-time Algorithm

For a point v on T, we define the right intercept, rv, and the left intercept, lv, as the rightmost
and leftmost point on A in VP (v), respectively. Equivalently, for a line segment s on T, we
define the right intercept, rs, and the left intercept, ls, as the right and left intersection of

23:2 A Greedy Linear-time Algorithm for the Altitude Terrain Guarding Problem

a

p

q

b

b
0a

0

w x y z

Figure 1 x-monotone chain from a
′ to b

′ and line segment ab at height h of Terrain T. Left and
right intercept of points p, q and line segment pq

the strong visibility polygon of s and A, respectively. For an example, consider Figure 1: x
and z are the left and right intercept of point p, resp., and w and y are the left and right
intercept of point q, resp. For the edge pq, x and y are the left and right intercept, resp. If
we move along A, from a to b, pq becomes partially visible at w while z is the last point
from which pq is partially visible. The segment is completely visible for any point on A
between x and y. Notice that lpq = lp and rpq = rq. For t, t

′ ∈ A, we write t ≤ t
′ (t < t

′) if t

is (strictly) left of t
′ , i.e., has a (strictly) smaller x-coordinate; we say that t lies before t

′ ,
and t

′ lies after t on A.
We first compute the shortest paths from each of a and b to the vertices of T , which can

be done in O(n) time [4]. For a point v ∈ T , let Pv,a and Pv,b be the shortest paths from v

to a and v to b, respectively. Note that these shortest paths consist of convex chains of total
complexity O(n). To find the right intercept of point v, we can extend the first segment of
Pv,b and find its intersection with A. To find the left intercept of point v, we can extend the
first segment of Pv,a and find its intersection with A (see Figure 1 and Figure 2). Similarly,
we can find the left and right intercept of a line segment s ∈ T .

Our algorithm proceeds in a greedy fashion, placing guards on A in order, from a to b.
Let g1, g2, . . . , gi be the guards placed so far. As discussed in [2], all edges that lie to the
left of the last placed guard, gi, and the edge vertically below gi, are visible by the guards
placed so far. Thus, after placing gi, we need be concerned with the edges to the right of gi.

Let e = pq be an edge of T that lies to the right of gi. Then pq is either (a) visible from
gi, (b) not visible from gi (no point of pq is visible from gi) or (c) partially visible from gi,
in which case gi sees a sub-segment p′q of pq. An easy observation from [4, 2] is that none of
the guards preceding gi on A can see any point of pp′; that portion of pp′ can only be seen
by a guard placed to the right of gi.

Another observation from [2] is that the guards forming the optimal set must be placed
at well defined points on A, each of which corresponds to a right intercept, rv, where v is
either a vertex of T or otherwise it corresponds to some point on a partially visible edge,
as described earlier. This implies that, starting from gi, the next guard will be placed at
the leftmost right intercept rl on A, among those generated by the edges to the right of gi.
Once we reach an edge vertically below rl we place gi+1 at rl and repeat the process.

Note that to achieve linear time we cannot afford to keep the right intercepts in sorted
order (see [5]). Instead, it is enough to keep track of the leftmost right intercept corresponding
to the edges of T , including those generated by partially visible edges, following gi.

I Observation 1. After placing gi+1 all edges of T between gi and gi+1 are visible by the
guards g1, g2, . . . , gi+1.

Ovidiu Daescu, Hemant Malik and Christiane Schmidt 23:3

a b
gi

a
0

b
0

p

v

q

pb(q)

u

pb(p)

rv

Figure 2 Line segment pq is partially seen by guard gi. A portion of the shortest path tree
originating from b is shown with dashed lines (cyan).

It follows from Observation 1 that after placing gi+1 we don’t need to be concerned with
the right intercepts of the edges of T between gi and gi+1.

For a segment s of T , we define xl
s as the x-coordinate of the leftmost endpoint of s and

xr
s as the x-coordinate of the rightmost endpoint of s.
We now describe our algorithm in more details. Observe that all edges to the left of the

first guard g1 must be fully seen by g1. To place g1, we traverse the edges of T in order,
starting with e1. For each edge visited, we mark it as visible, compute its right intercept
on A, and keep track only of the leftmost such intercept, rl. Once we reach an edge e ∈ T

such that xl
e ≤ rl < xr

e we stop, mark e as visible, and place g1 at rl. We then repeat the
following inductive process. Assume guard gi has been placed. We start with the first edge
of T to the right of gi and check if the edge is visible, not visible, or partially visible from
gi. Let ek be the current edge. If ek is visible then we mark it as such. If ek is not visible
then we compute its right intercept on A while keeping track of the leftmost right intercept,
rl, following gi on A. If ek is partially visible, let e′k be the segment of ek not visible from
gi and let q′ be the right endpoint of e′k; we compute the right intercept of q′ on A while
keeping track of rl. Once we reach and edge e ∈ T such that xl

e ≤ rl < xr
e we stop, mark e

as visible, and place gi+1 at rl. The proof that this greedy placement results in an optimal
set of guards has been given in [2].

I Lemma 1. Given an edge e = pq of T and a point v ∈ e, the right intercept rv of v can be
found in O(1) amortized time. A similar claim holds for the left intercept of v.

Proof. We make the proof for the right intercept (for the left one it is similar).
The shortest path from a and b to each vertex in T can be found in O(n) time [2] and is

available in the resulting shortest path tree. These shortest paths consist of convex chains.
Let Ta and Tb be the shortest path trees originating from a and b, respectively. Both Ta and
Tb have O(n) vertices and edges. Let T u

b be the subtree of Tb rooted at vertex u.
Let pb(u) denote the parent of vertex u in Tb. Obviously, if v is an end vertex of e the

right intercept of v is available in constant time from Tb, as the intersection of the line
through p and pb(v) with A. Assume v is interior to e.

To find the right intercept of v, we need to find the first vertex u of Tb on the shortest
path, Pv,b, from v to b; the intersection of the extension of vu and A corresponds to rv. Note
that vu is tangent to a convex chain of Tb at point u, specifically the chain capturing the
shortest path from q to b in Tb. Hence, we can find rv by finding the tangent from v to that

23:4 A Greedy Linear-time Algorithm for the Altitude Terrain Guarding Problem

Figure 3 Terrain T with line segments e1, . . . en and right intercept of each line segment

convex chain, by traversing the chain starting at q. Moreover, the vertex u is located on the
portion of the chain from q to pb(p). Due to the structure of the shortest paths, it is an easy
observation that this subchain of Tb will not be revisited while treating an edge of T to the
right of e (see Figure 2). Since the total complexity of the convex chains is O(n) it follows
that over all edges of T we find rv in amortized O(1) time. J

For an example, see Figure 3. We start with e1 and store r1 (right intercept of e1) as r
′ .

We move to the next line segment, e2, and re1 = re2 . Because re3 < re1 , we update r′ = re3 .
We move to the e4 and re3 = re4 . For e5, r5 > r′ , hence, no update is necessary. Moreover,
xl

e5 ≤ r′ ≤ xr
e5 . Hence, we place the first guard at re3 and set r′ = re6 .

The algorithm visits each edge e of T only once, and the total time spent while visiting a
line segment can be split into the following steps:

1. The time taken to decide the visibility of e by the last placed guard.
2. The time to find the partially visible segment of e, if needed.
3. The time to find the right intercept of a point v on edge e.
4. The time to compare re or rv with r′ .

Since we know the location of the last guard on A the first step takes constant time. The
second step and the third step take O(1) amortized time (see proof of Lemma 1). The last
step takes constant time. Hence, the total running time of the algorithm is O(n).

I Theorem 2. The algorithm presented solves the ATGP(T,A) problem in O(n) time.

References
1 J. King, E. Krohn, Terrain guarding is NP-hard, SIAM Journal on Computing 40 (5) (2011)

1316–1339.
2 S. Friedrichs, V. Polishchuk, C. Schmidt, Altitude terrain guarding and guarding uni-

monotone polygons, in: Proceedings of the 34th European Workshop on Computational
Geometry, 2018.

3 B. Nilsson, Guarding art galleries; methods for mobile guards, Ph. D. thesis, Lund Univer-
sity.

4 D. Avis, G. T. Toussaint, An optimal algorithm for determining the visibility of a polygon
from an edge, IEEE Trans. Computers 30 (12) (1981) 910–914.

5 D. Z. Chen, O. Daescu, Maintaining visibility of a polygon with a moving point of view,
Inf. Process. Lett. 65 (5) (1998) 269–275.

An Improved Lower Bound for Non-Trivial Reach

Hugo A. Akitaya∗ David Stalfa† Csaba D. Tóth∗‡

1 Problem Statement

Let S = {s1, . . . , sn} be a set of points, or anchors, in the unit square U = [0, 1]2. We say that a square q is
empty if q ⊂ U and no point in S is interior to q. For i = 1, . . . , n, let q1i be the maximal, axis-aligned empty
square whose lower-left corner is si. Define q2i , q

3
i , and q4i similarly with si in the upper-left, upper-right,

and lower-right corners, respectively We call such a square qji an anchored square.

Definition 1. For a given set S = {s1, . . . , sn}, the reach of S is R(S) =
⋃n
i=1

⋃4
j=1 q

j
i .

In [1], we showed that area(R(S)) ≥ 1
2 for all S. This lower bound has applications in approximating

the maximal area of an anchored square packing [2], where the reach is the union of all possible anchored
square packings. In this note, we improve the lower bound on area(R(S)) for some of the most interesting
instances with a closer analysis of the techniques developed in [1].

2 Previous Results

In [1], we distinguish between trivial and non-trivial instances of a point set S. A trivial instance is a point
set whose reach is disjoint from some side of U . For trivial instances, the lower bound given in [1] is tight:
there is a trivial instance S for which area(R(S)) = 1

2 (see Fig. 1(a)). For non-trivial instances, where the
reach touches all four sides of U , the problem of finding a tight lower bound remains open. Figure 1(b)
and (c) show non-trivial instances of the smallest area we have found. Both yield a reach of area 4

7 . In the
remainder of this note, we assume that S is a non-trivial instance.

In establishing the lower bound in [1], we assume that no two anchors lie on an axis parallel line, and
that no anchor lies on ∂U . This assumption is justified by the following lemma.

Lemma 2. ([1, Lemma 5]). If area(R(S)) ≥ 1
2 for every finite point set S ⊂ U such that S ⊂ int(U) and

no two points in S have the same x- or y-coordinates, then area(R(S)) ≥ 1
2 for every finite S ⊂ U .

We also make use of the notion of a gap, or a region disjoint from R(S).

Definition 3. A gap is a maximal connected region C such that C ⊂ U \R(S).

In [1, Lemma 7], we give a complete classification of the gaps (in non-trivial instances) into five types:
Every gap is either a rectangle adjacent to the side of the square U , or the union of two such rectangles.
Using this classification, we define a charging scheme to pick out a charged region RC around each gap C.
We show that for every gap C: (i) RC ⊆ R(S), (ii) area(RC) ≥ area(C), and (iii) for any two gaps C ′ 6= C,
RC and RC′ are interior disjoint. These properties of the charged regions yield the first main result of [1].

Theorem 4. ([1, Theorem 12]). For every finite set S ⊂ U , area(R(S)) ≥ 1
2 .

Corollary 5. Suppose R(S) is non-trivial. If there is some region W such that W ⊆ R(S) and, for all C,
W is interior disjoint from RC , then area(R(S)) ≥ 1

2 + area(W).
∗Tufts University, Medford, MA, USA. Email: hugo.alves akitaya@tufts.edu
†Northeastern University, Boston, MA, USA. Email: stalfa@ccis.neu.edu
‡California State University Northridge, Los Angeles, CA, USA. Email: csaba.toth@csun.edu

1

1
14

3
14

1
7

2
7

(a) (b) (c)

Figure 1: (a) A trivial reach with area 1
2
. (b) A non-trivial reach with area 4

7
. The anchors in the lower left have

coordinates (1
14
, 3
14

), (3
14
, 1
14

), and (3
14

+ ε, 3
14

+ ε). (c) A non-trivial reach with area 4
7
.

3 Result: Improved Lower Bound for Non-Trivial Instances

Following Corollary 5, we define a region W ⊆ R(S) that is disjoint from all charged regions. We prove a
lower bound on the area of W , and so improve the lower bound on area(R(S)) for non-trivial instances.

Definition 6. For a gap C, a line segment ` is a leg of C if ` ⊆ ∂C, ` ∩ ∂U is a single point, and ` ⊂ ∂q
for some anchored square q. See the bold edges in Figure 1(b,c) for examples.

Lemma 7. Let C be a gap with leg `. There are regions N` and W` ⊆ N` with the following properties:
1. N` ⊆ R(S) and is an empty sqaure,
2. for all `1, `2 distinct from ` and each other, N`, N`1 , and N`2 are three-way interior disjoint,
3. for all `′ intersecting a side of U different than `, W` and W`′ are interior disjoint, and
4. for all C, W` and RC are interior disjoint.

C

∂U

`

Q

`3

`1 `2

N`3

(a) (b)

N`

W`

Figure 2: (a) Definitions of N` and W`. (b) If N`1 , N`2 , and N`3 intersect, then one of `1, `2, or `3 intersects R(S).

Proof. Define N` as the square interior disjoint from C whose side is `. Define W` as the triangle with one
vertex at the center of N` and one side N` ∩ ∂U (see Fig. 2(a)). We proceed to show that N` and W` have
the properties listed in the lemma.

1. By characterization of the gaps in [1], ` ⊆ ∂q for some empty q ⊆ R(S) anchored at some si ∈ S.

2. Suppose `1, `2, and `3 are legs such that N`1 , N`2 , and N`3 share some interior point. Let the
intersection of the three squares be the rectangle Q. Three sides Q1, Q2, Q3 of Q must have the
following property: if r is a ray orthogonal to Qi and disjoint from the interior of Q, with r intersecting
Qi at a single, interior point, then r intersects and is orthogonal to exactly one of `1, `2, or `3. In this
case, we say that Qi projects to the `j it intersects.

2

Let Q1 project to `1, Q2 to `2, and Q3 to `3. Without loss of generality, let Q1 and Q2 be parallel,
and let them be orthogonal to the x-axis with Q1 to the left. The remaining leg, `3, must extend to
either the left or right edge of U . Suppose `3 extends to the left. Then the intersection of `3 and ∂U
is left of `1. But in this case, N`3 intersects with `1 (see Fig. 2(b)). This contradicts the assumption
that `1 is a leg.

3. This follows from the fact that the sides of W` interior to U are defined along lines with slope ±1.

4. Suppose, for some C, RC and W` share an interior point. By definition of the charging scheme in [1]
(see Fig. 3) and W`, W` cannot be a subset of RC . So W` must intersect some edge of RC . If W`

intersects RC ∩ C, W` intersects C. So W` intersects some edge of RC that shares at most one point
with C. Because these edges of RC and the edges of W` interior to U have slope ±1, W` contains some
vertex v 6∈ ∂C.

Let an edge e of RC be a lead edge if e intersects ∂U and is a subset of some line segment d ⊆ R(S)
such that one endpoint of d lies at C ∩ ∂U , the other is at some anchor, and d has slope ±1. By
definition, all edges of RC that intersect ∂U , and are not co-linear with some edge of C, are leading
edges. Let a vertex v ∈ RC be a lead if v is an endpoint of some leading edge and v 6∈ ∂U . If W`

contains a lead in its interior, then W` either intersects C or contains some anchor.

Suppose W` contains some non-lead vertex v 6∈ ∂C of RC (and contains no lead and does not intersect
C). Then, by definition of the charging scheme and the characterization of the gaps in [1], C is adjacent
to the top edge of U , and v is the lowest point of RC . Let T be the largest isosceles triangle in RC
that contains v and has a vertical axis of symmetry. By the characterization of the gaps in [1], T lies
in the top quadrant of some square q ⊆ R(S). So either C ′ intersects N` or C intersects RC′ .

∂U ∂U ∂U

(a) (b) (c)

T

T1

T2

Figure 3: (a) A charged region for an L-shaped gap in a corner. Both vertices of RC not in ∂C are leads. (b) A
charged region for a rectangular gap (on a side or in a corner). Only the right-most vertex of RC is a lead. (c) A
charged region for an L-shaped gap on a side. The left- and right-most vertices of RC are both leads.

Lemma 8. Let p be the lower left corner of U . If p ∈ R(S) for some finite point set S ⊂ U , then there is a
set S′ such that S ⊂ S′ and area(R(S′)) < area(R(S)).

Proof. Suppose p ∈ R(S). Then p lies on the boundary of some anchored square q anchored at some
si. By Lemma 2, we can assume that si = (a, a) lies on the diagonal of q from p (see Fig. 4(a)). Let
S′ = S ∪ {(a2 , a2), (a3 ,

a
6)} (see Fig. 4(b)). Then S ⊂ S′ and area(R(S′)) < area(R(S)), as claimed.

Corollary 9. There are at least four gaps in the minimal reach.

Proof. By Lemma 3, all four corners of U are outside R(S). By assumption, the reach is non-trivial, and so
must touch all four sides. Therefore, there are at least four gaps.

3

a a

a
2

a
6

a
3

(a) (b)

∂U ∂Up

si si

(c)

B

Figure 4: (a) If a corner p of U is in R(S), then there is some anchor si diagonal from p. (b) By inserting anchors,
R(S) decreases; consequently, if R(S) has minimal area, the corner of U is not in R(S). (c) A central rectangle B
with four W`’s shown in dark gray.

Assume that R(S) is non-trivial for a finite point set S ⊂ U . By Corollary 9, there is at least one leg
intersecting each side. Let `1, . . . , `4, resp., be a longest leg in R(S) intersecting the bottom, top, right, and

left edge of U , respectively. Let λi = |`i| and λ =
∑4
i=1 λi.

Lemma 10. If R(S) is nontrivial, then area(R(S)) ≥ max
(
1− λ+ 1

4λ
2, 12 + 1

16λ
2
)
.

Proof. Since `1, . . . , `4 are the longest legs on each side, we have that a rectangle B defined by sides of length
(1− λ1 − λ2) and (1− λ3 − λ4) is a subset of R(S). By Lemma 7, R(S) also contains squares N`1 , . . . , N`4
with respective side lengths λ1, . . . , λ4 such that each N`i is interior disjoint from B, and no point is in more
than two such N`i (see Fig. 4(c)). So area(R(S)) is at least

area(B) +
1

2

4∑

i=1

area(N`i) ≥ (1− λ1 − λ2)(1− λ3 − λ4) +
1

2

4∑

i=1

λ2i ≥ 1− λ+
1

4

(4∑

i=1

λi

)2

≥ 1− λ+
1

4
λ2

by Jensen’s inequality.
Let W =

⋃
W`i for i = 1, . . . , 4. By Corollary 5 and Lemma 7, area(R(S)) ≥ 1

2 + area(W). By Lemma
7, the regions W`i , i = 1, 2, 3, 4, are pairwise disjoint. So area(R(S)) is at least

1

2
+

4∑

i=1

area(W`i) ≥
1

2
+

1

4

4∑

i=1

λ2i ≥
1

2
+

1

16

(4∑

i=1

λi

)2

≥ 1

2
+

1

16
λ2

by Jensen’s inequality.

Theorem 11. Let R(S) be a non-trivial reach. Then area(R(S)) ≥ 1
9 (11− 2

√
10) ≈ 0.51949

Proof. By Lemma 10, we have

area(R(S)) ≥ min
λ>0

max

(
1− λ+

1

4
λ2,

1

2
+

1

16
λ2
)
.

By solving 1−λ+ 1
4λ

2 = 1
2 + 1

16λ
2, the minimum is attained at λ = 1

3 (8−2
√

10), and it is 1
9 (11−2

√
10).

4 Directions for Future Work

This result improves the lower bound proved in [1] for non-trivial instances. The problem of finding a tight
lower bound on area(R(S)) for arbitrary non-trivial instances remains open. One direction for improvement
is to find some S that yields a non-trivial reach with area less than 4/7. However, based on our construction
of two instances with area 4/7, we conjecture that 4/7 is tight. One strategy for proving a tight lower bound
might be to show that some constant k anchors is sufficient to construct a reach of minimal area, and then
find the optimal arrangement of k anchors.

4

References

[1] Hugo A. Akitaya, Matthew D. Jones, David Stalfa, and Csaba D. Tóth. Maximum Area Axis-Aligned
Square Packings. In Igor Potapov, Paul Spirakis, and James Worrell, editors, 43rd International Sym-
posium on Mathematical Foundations of Computer Science (MFCS 2018), volume 117 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 77:1–77:15, Dagstuhl, Germany, 2018. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.MFCS.2018.77.

[2] Kevin Balas, Adrian Dumitrescu, and Csaba D. Tóth. Anchored rectangle and square packings. Discrete
Optimization, 26:131–162, 2017. doi:10.1016/j.disopt.2017.08.003.

5

On the Hardness of Some Geometric Optimization Problems with Rectangles

Joseph S B Mitchell1, Supantha Pandit2

Stony Brook University, Stony Brook, New York, USA
joseph.mitchell@stonybrook.edu, pantha.pandit@gmail.com

Abstract

We study Set Cover, Hitting Set, Piercing Set, Independent Set, Dominating Set problems, and discrete versions (Discrete Inde-
pendent Set and Discrete Dominating Set) for geometric instances in the plane. We focus on certain restricted classes of geometric
objects, including axis-parallel lines, strips, and rectangles. For rectangles, we consider the cases in which the rectangles are (i)
anchored on a horizontal line, (ii) anchored on two lines (either two parallel lines or one vertical and one horizontal line), and (iii)
stabbed by a horizontal line. Some versions of these problems have been studied previously; we focus here on the open cases, for
which no complexity results were known. In particular, we show that the Discrete Dominating Set and Discrete Independent Set
problems are NP-hard for rectangles anchored on two parallel lines and rectangles stabbed by a horizontal line.

1. Introduction

We study several special cases of various optimization prob-
lems in the plane, including the Set Cover (SC), Hitting Set
(HS), Piercing Set (PS), Independent Set (IS), and Dominating
Set (DS) problems. In addition, we consider discrete versions
of the IS and DS problems, the Discrete Independent Set (DIS)
and Discrete Dominating Set (DDS) problems. The inputs of
these two problems are a set of objects O and a set of points P.
In the DIS problem the objective is to select minimum cardinal-
ity subset O′ ⊆ O of objects such that any two objects in O′ do
not share a point in P. On the other hand, in the DDS problem
the objective is to select a minimum collection O′ ⊆ O of ob-
jects such that the intersection of any object in O \ O′ and an
object in O′ contains a point in P.

(a) (b) (c)

Figure 1: (a) Rectangles anchored on a horizontal line. (b) Rectangles anchored
on two lines. (c) Rectangles anchored on two orthogonal lines.

In this paper we study various optimization problems on var-
ious types of geometric objects as follows (see Figure 1).
Line: Axis parallel lines.
Strip: Axis-parallel strips.
R-AHL: Rectangles anchored on a horizontal line.
R-ATL: Rectangles anchored on two lines.
R-ATOL: Rectangles anchored on two orthogonal lines.
R-SHL: Rectangles stabbing a horizontal line.

1Support from the National Science Foundation (CCF-1526406) and the
US-Israel Binational Science Foundation (project 2016116).

2Partially supported by the Indo-US Science & Technology Forum
(IUSSTF) under the SERB Indo-US Postdoctoral Fellowship scheme with grant
number 2017/94, Department of Science and Technology, Government of India.

1.1. Our Contributions

We list our contributions as follows.

Problems IS SC HS PS DS DDS DIS
Line P P P[1] P P H P
Strip P H[2] H[2] P P H H[2]

R-AHL P P[3,
2]

P[3,
2] P P ?? P[2]

R-ATL
P

[4, 5,
6, 7]

H[8] H[8] ?? ?? H
Th 1

H
Th 3

R-ATOL
P

[4, 5,
6, 7]

H H ?? ?? H H

R-SHL P H H P P H
Th 2

H
Th 4

Table 1: Our contributions are shown in colored text (P-> polynomial time.
H-> NP-hard). In this extended abstract, we only present a partial set of the
results. The results in non-colored text for which no references are given are
either trivial to show or can be derived from the other problems easily.

1.2. Prerequisites

The rectilinear planar 3-SAT (R-P-3-SAT) problem can be
defined as follows. For each variable or clause we take a hor-
izontal line segment. The variable segments are placed on a
horizontal line and clause segments are connected to these vari-
able segments either from above or below by vertical line seg-
ments called connections such that none of these line segments
and connections intersect. The goal is to decide whether there
a truth assignment to the variables such that φ is satisfiable.
Figure 2 shows an instance of the R-P-3-SAT problem. Knuth
and Raghunathan [9] proved that this problem is NP-complete.
Note that we can order the variable segments in increasing x
direction. Let Ct = (xi ∨ x j ∨ xk) be a clause that connects the
variables from above where xi, x j, xk. Then we say that, xi is a
left, x j is a middle, xk is a right variable.

1

Figure 2: An instance of R-P-3-SAT problem. Solid (resp. dotted) clause verti-
cal segments represent that the variable is positively (resp. negatively) present
in the corresponding clauses. For clause C1, x1 is a left, x2 is a middle, and x5
is a right variable.

2. Discrete Dominating Set

2.1. Rectangles anchored on two lines

We prove that the DDS-R-ATL problem is NP-hard by a re-
duction from the R-P-3-SAT problem (see prerequisites).
Reduction: To represent a variable gadget of the DDS-R-
ATL problem, we consider the graph G given in Figure 3. The
following result on G can be proved easily.

Figure 3: Structure of the graph G.

Lemma 1. There are exactly two optimal dominating sets,
D0 = {v4, v8, . . . , v8α} and D1 = {v2, v6, . . . , v8α−2} of vertices
each with cost exactly 2α for graph G.

We choose α to be the maximum number of clause vertical
connections connecting from clause segments to a single vari-
able segment either from above or from below. We encode the
graph in Figure 3 as a variable gadget of the DDS-R-ATL prob-
lem. For each vertex, we take a rectangle and for each edge,
we take a point which is contained in exactly the rectangle cor-
responding to the two vertices that form the edge. The gadget
for variable xi is shown in Figure 4. We take 8α rectangles Ri

and 10α points Pi in two sides of a horizontal line L. The 4α
rectangles {si

1, s
i
2, . . . , s

i
4α} and 5α points {pi

1, pi
2, . . . , pi

5α} are
one side of L and the 4α rectangles {si

4α+1, s
i
4α+2, . . . , s

i
8α} and

5α points {pi
5α+1, pi

5α+2, . . . , pi
10α} are another side L. There-

fore, by Lemma 1 we conclude that for each variable gad-
get there are exactly two optimal dominating set of rectangles
S 0

i = {si
4, s

i
8, . . . , s

i
8α} and S 1

i = {si
2, s

i
6, . . . , s

i
8α−2} each size ex-

actly 2α. This represents the truth value of the variable xi.
The construction of the clause gadgets in the above and be-

low are independent, and hence we describe the clause gadgets
only for the above. For a clause Ct which contains three vari-
ables xi, x j and xk in this order from left to right, we take a
rectangle rt and three points pti , pt j , ptk . The bottom boundary
of rt, say bt, are on the horizontal segment of Ct. In Figure 5, we
give a schematic diagram of the clause rectangles and positions

Figure 4: Structure of a variable gadget.

Figure 5: Schematic diagram of the clause rectangles and position of the points
(circles) and their interaction with the variable gadget.

of the points corresponding to the clauses. We now describe
how rt, pti , pt j , ptk interact with the variable gadgets.

For each variable xi, 1 ≤ i ≤ n, sort the vertical connections
from left to right which connect to xi from clauses connecting
from above. Let the clause Ct connects to xi via l-th connection,
then we say that Ct is the l-th clause for the variable xi.

Let Ct be a clause containing the three variables xi, x j and xk

in this order from left to right. Here xi is a left variable in the
clause Ct and let Ct be the l1-th clause for xi. If xi occurs as a
positive literal in Ct, then we place the point pti on bt and inside
the rectangle si

4l1+4 only. Otherwise, we place the point pti on
bt and inside the rectangle si

4l1+2 only. The interaction is similar
for x j (middle variable) and xk (right variable) by replacing l1
with l2 and l3 respectively. See Figure 6 for the above construc-
tion. Clearly, the above construction can be done in polynomial
time. We now prove the correctness of the above construction.

Figure 6: Structure of a clause gadget and its interaction with variable gadgets.

Lemma 2. The formula φ is satisfiable iff there exists a solution
to D , an instance of the DDS-R-ATL problem constructed from
φ, with cost at most 2αn.

Proof. Let us assume that the formula φ is satisfiable and let
A : {x1, x2, . . . , xn} → {true, f alse} be a satisfying assignment.
For the i-th variable gadget, take the solution S 0

i if A(xi) = true.

2

Otherwise take S 1
i if A(xi) = f alse. Clearly, we choose a total

of 2αn rectangles and these rectangles dominates all the vari-
able and clause rectangles.

On the other hand, Suppose that there is a solution to D with
cost at most 2αn. To dominate all the half-strips in a variable
gadget requires at least 2α rectangles (see Claim 1). Note that
all the variable gadgets are disjoint. Therefore, from each vari-
able gadget we must choose exactly 2α rectangles (either set S 0

i
or set S 1

i). Set a variable to true if S 0
i is chosen in its variable

gadget, otherwise set it to false. Note that there are three points
in a clause rectangle. Since the clause rectangle is dominated,
at least one of these three points is covered by the solution.
Such a point is either in solution S 0

i or in solution S 1
i of the

corresponding variable gadget based on whether the variable is
positively or negatively present in the clause. Hence, the above
assignment is a satisfying assignment.

Theorem 1. The DDS-R-ATL problem is NP-hard.

2.2. Rectangles stabbed by a horizontal line
We prove that the DDS-R-SHL problem is NP-hard. The re-

duction is similar to the reduction that is shown in Section 2.1.
Here also we encode the graph G in Figure 3 as a variable gad-
get (see Figure 7(a)). Note that in Figure 7(a), all the rectangles
are anchored on L except si

4α and si
8α that is stabbing in the mid-

dle by L. Clearly, using Lemma 1, we say that for each variable
gadget there are exactly two optimal dominating sets of rectan-
gles S 0

i = {si
4, s

i
8, . . . , s

i
8α} and S 1

i = {si
2, s

i
6, . . . , s

i
8α−2} each with

size exactly α. These two sets represent the truth value of xi.
The clause gadgets are exactly the same as the clause gad-

gets in Section 2.1. However here the interaction between the
clause gadgets and the variable gadgets is different. We first re-
verse the connection of the clauses in the R-P-3-SAT problem
instance i.e., the clauses those connect the variables from above
(resp below) are now connect the variables from below (resp
above). Now observe that the description of the variable clause
connection for the clauses that connects to the variable from
above in Section 2.1 are true here for the variable clause con-
nection for the clauses that connects to the variable from below.
In Figure 7(b), we give a schematic diagram of the clause rect-
angle and position of the points corresponding to the clauses.

A similar proof of Theorem 1 leads to the following theorem.

Theorem 2. The DDS-R-SHL problem is NP-hard.

3. Discrete Independent Set

3.1. Rectangles anchored on two lines
We prove that the DIS-R-ATL problem is NP-hard. We give

a reduction from the R-P-3-SAT problem (see prerequisites).
Reduction: Note that, we choose α to be the maximum num-
ber of clause vertical connections connecting from clause seg-
ments to a single variable segment either from above or from
below. The gadget for the variable xi is shown in Figure
8(a). We take 16α rectangles and 16α points in two sides of
a horizontal line L. The 8α rectangles {si

1, s
i
2, . . . , s

i
8α} and 8α

points {pi
1, pi

2, . . . , pi
8α} are one side of L and the 8α rectangles

{si
8α+1, s

i
8α+2, . . . , s

i
16α} and 8α points {pi

8α+1, pi
8α+2, . . . , pi

16α}

(a)

(b)

Figure 7: (a) A variable gadget. (b) Schematic diagram of the variable and
clause gadgets and their interaction. Blue rectangles are schematically represent
the variable gadgets.

are another side of L. Each pair of consecutive rectangles have
a point in common. Since these rectangles forms a cycle graph,
where rectangles corresponding to vertices and two rectangles
share a point if and only if there is an edge between the corre-
sponding vertices of these two rectangles.

Observation 1. For each variable gadget there are exactly two
optimal independent sets of rectangles H0

i = {si
2, s

i
4, . . . , s

i
16α}

and H1
i = {si

1, s
i
3, . . . , s

i
16α−1} each with size exactly 8α.

The construction of the clause gadgets in above and below
are independent, and hence we describe the clause gadgets only
for above. Let Ct be a clause that contains variables xi, x j and
xk in this order from left to right. For Ct, we take 5 rectan-
gles {st

1, s
t
2, s

t
3, s

t
4, s

t
5} and 6 points; 1 point pti corresponding

to xi, 4 points pt j

1 , pt j

2 , pt j

3 , pt j

4 corresponding to x j, and 1 point
ptk corresponding to xk. The rectangle st

1 covers the points
{pti , pt j

1 , pt j

4 }, st
2 covers {pti , pt j

1 , pt j

2 }, st
3 covers {pt j

2 , pt j

3 }, st
4 cov-

ers {pt j

1 , pt j

2 , pt j

4 , ptk }, and st
5 covers {pt j

1 , pt j

4 , ptk }. See Figure 9 for
this construction. We now describe the placement of the points
and rectangles with respect to the variable gadget. We take a
rectangle rt. The bottom boundary of rt, say bt, are on the hori-
zontal segment of Ct and it can extends to the infinity (actually
we can take horizontal line in a far enough distance such that
the top boundaries of all such rectangles touch it) in the upward
direction. We take a horizontal thin rectangular region along
the top edge of rt. We place points corresponding to the clause
Ct inside this region. The rectangles corresponding to Ct are
exclusively in rt and their top boundaries are inside the region.
In Figure 8(b), we give a schematic diagram of the clause rect-
angles, regions, and positions of the points corresponding to the
clauses. We now describe how the rectangles and points corre-
sponding to the clauses interact with the rectangles and points
corresponding to variables.

3

(a)

(b)

Figure 8: (a) Structure of a variable gadget. (b) Schematic diagram of the
variable and clause gadgets and their interaction.

Figure 9: Position of the rectangles and points (empty circles) corresponding to
the clauses.

For each variable xi, 1 ≤ i ≤ n, sort the vertical connections
from left to right that connect to xi from clauses connecting
from above. Let clause Ct connect to xi via l-th connection,
then we say that Ct is the l-th clause for the variable xi. Assume
that the clause Ct contains three variables xi, x j, and xk in this
order from left to right. We now have the following cases.

ã Here xi is a left variable in the clause Ct and let Ct be the
l1-th clause for xi. If xi occurs as a positive literal in Ct,
then we place the point pti inside the rectangle si

8l1−5. Oth-
erwise, we place the point pti inside the rectangle si

8l1−4.

ã Here x j is a middle variable in the clause Ct and let Ct be
the l2-th clause for x j. If x j occurs as a positive literal
in Ct, then we place the point pt j

1 , pt j

2 , pt j

3 , and pt j

4 inside
the rectangle s j

8l2−6, s j
8l2−5, s j

8l2−3, and s j
8l2−2 respectively.

Otherwise, we shift all the points one rectangle to the right.

ã Here xk is a right variable in the clause Ct and let Ct be the
l3-th clause for xk. If xk occurs as a positive literal in Ct,
then we place the point ptk inside the rectangle sk

8l3−5. Oth-
erwise, we place the point ptk inside the rectangle sk

8l3−4.

See Figure 9 for the above construction. Clearly, the con-
struction described above can be done in polynomial time.

Theorem 3. The DIS-R-ATL problem is NP-hard.

Proof. We prove that formula φ is satisfiable if and only if there
exists a solution to the DIS-R-ATL problem instance D with
cost 8αn + m. Assume that φ has a satisfying assignment. From
the gadget of xi, select the set H1

i if the xi is true. Otherwise
select the set H0

i . Hence we select a total of 8αn rectangles
from the variable gadget. Observe that the way we construct
the clause gadget, if the clause is satisfied then exactly one of
the rectangles corresponding to each clause is selected in an
independent set. Hence we get a solution of 8αn+m rectangles.

On the other hand, assume that D has a solution with 8αn+m
rectangles. From the gadget of xi we select 8α rectangles either
H0

i or H1
i . We set xi to be true if H1

i is selected otherwise set
xi to be false if H0

i is selected. We now argue that this is a sat-
isfying assignment of φ i.e., every clause is satisfied. Consider
a clause Ct = (xi ∨ x j ∨ xk) (a similar argument can be applied
for other clauses as well). If Ct is not satisfied, then we select
the sets H0

i , H0
j , and H0

k from the corresponding variable gad-
get. These rectangles prevent in selecting any rectangle from
the set of rectangles corresponding to Ct. This contradicts the
fact that the size of the solution is 8αn + m. However if one of
H1

i , H1
j , and H1

k is selected then from the set of rectangles of Ct,
exactly one rectangle is selected in a solution. Therefore, the
above assignment is a satisfying assignment.

3.2. Rectangles stabbed by a horizontal line
In this section we prove that the DIS-R-SHL problem is NP-

hard. The reduction is from the R-P-3-SAT problem and is a
composition of the two reductions in Sections 3.1 and 2.2.

Theorem 4. The DIS-R-SHL problem is NP-hard.

References

[1] R. Hassin, N. Megiddo, Approximation algorithms for hitting objects with
straight lines, Discrete Applied Mathematics 30 (1) (1991) 29 – 42.

[2] T. M. Chan, E. Grant, Exact algorithms and APX-hardness results for ge-
ometric packing and covering problems, Computational Geometry 47 (2,
Part A) (2014) 112 – 124.

[3] M. J. Katz, J. S. B. Mitchell, Y. Nir, Orthogonal segment stabbing, Comput.
Geom. Theory Appl. 30 (2) (2005) 197–205.

[4] J. M. Keil, J. S. Mitchell, D. Pradhan, M. Vatshelle, An algorithm for the
maximum weight independent set problem on outerstring graphs, Comput.
Geom. Theory Appl. 60 (C) (2017) 19–25.

[5] H. Kong, Q. Ma, T. Yan, M. D. F. Wong, An optimal algorithm for finding
disjoint rectangles and its application to PCB routing, in: Design Automa-
tion Conference, 2010, pp. 212–217.

[6] A. Ahmadinejad, H. Zarrabi-Zadeh, Finding maximum disjoint set of
boundary rectangles with application to PCB routing, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 36 (3)
(2017) 412–420.

[7] A. Ahmadinejad, S. Assadi, E. Emamjomeh-Zadeh, S. Yazdanbod,
H. Zarrabi-Zadeh, On the rectangle escape problem, Theoretical Computer
Science 689 (2017) 126 – 136.

[8] A. Mudgal, S. Pandit, Geometric hitting set, set cover and generalized class
cover problems with half-strips in opposite directions, Discrete Applied
Mathematics 211 (2016) 143–162.

[9] D. E. Knuth, A. Raghunathan, The problem of compatible representatives,
SIAM Journal on Discrete Mathematics 5 (3) (1992) 422–427.

4

Min–# Curve Simplification, Revisited

Mees van de Kerkhof1, Irina Kostitsyna2, Maarten Löffler1, Majid Mirzanezhad3, and Carola Wenk3

1 Utrecht University, Netherlands, {m.a.vandekerkhof,m.loffler}@uu.nl
2 Eindhoven University of Technology, Netherlands, i.kostitsyna@tue.nl

3 Tulane University, USA, {mmirzane,cwenk}@tulane.edu

Abstract. In this paper we consider the classical min–#
curve simplification problem. Given a polygonal curve P with
n vertices in Rd and δ > 0, we aim to simplify P by an-
other polygonal curve P ′ with the minimum number of ver-
tices such that the Fréchet distance between them is at most
δ. We present an O(n4) time dynamic programming algorithm
for the min–# problem that uses O(n3) space when the ver-
tices in P ′ are selected from a subsequence of vertices in P .
Our result is an improvement of the one recently proposed by
van Kreveld et al [10].

1 Introduction

Approximating a polygonal curve by another curve is a long-
standing problem in computational geometry. One of the most
well-known settings that has received considerable attention is
the min–# simplification problem: given a polygonal curve P =
〈p1, p2, · · · , pn〉 in Rd, a distance measure D(·, ·) between two
curves and a real value δ > 0, find a polygonal curve P ′ =
〈p′1, p′2, · · · , p′k〉 with the minimum number of vertices such that
D(P, P ′) ≤ δ. We call the edges in P ′ links.

There are several variants of the min–# problem: (1) vertex-
restricted, where vertices of P ′ have to be a subsequence of
vertices of P , (2) curve-restricted, where vertices of P ′ can lie
anywhere on P , and (3) non-restricted, when vertices of P ′ can
be anywhere in the ambient space. Given a distance measure
D(·, ·) between two curves, such as Hausdorff δH , directed Haus-

dorff
−→
δH , or Fréchet distance δF , one can apply this distance in

a global or local way to the min–# problem as follows: First,
one can simply measure the distance D(P, P ′) between the two
curves; we denote this as the global distance Dg. In the local
distance D`, for the vertex- and curve-restricted cases, one mea-
sures the distance between each link in P ′ and its corresponding
subcurve in P whose endpoints are identical, and returns the
maximum of these distances. In this paper, we focus on global
distance measures in the vertex-restricted case.

There have been numerous results on different variants of the
min–# problem mostly for the vertex-restricted version under
local distance measures. The classical algorithm proposed by
Imai and Iri [8] solves the vertex-restricted min–# problem un-

der
−→
δ`H from P ′ to P . While their algorithm runs in O(n2 log n)

time, Chan and Chin [6] improved the running time to O(n2).
Guibas et al. [7] proposed an algorithm that computes the non-
restricted δgF in the plane in O(n2 log2 n) time using O(n) space.

Agarwal et al. [1] gave a near linear time approximation al-
gorithm for the vertex-restricted version under δ`F for any Lp
metric. Recently van Kreveld et al. [10] considered global dis-
tance measures and proved that the vertex-restricted min–#
problem under δgH(P, P ′) is NP-hard, whereas they gave a poly-
nomial time output-sensitive algorithm under δgF (P, P ′). They
also gave a polynomial time algorithm for the min–# simplifi-

cation under
−→
δgH(P ′, P), however they showed that the problem

under
−→
δgH(P, P ′) is NP-hard. See Table 1 for an overview of

existing results and our results. In this paper we only present
one of our results for the vertex-restricted case under the global
Fréchet distance. Proofs of our lemmas are skipped due to the
space constraint and can be found in [11].

2 Preliminaries

Let P = 〈p1, p2, · · · , pn〉 be a polygonal curve. We treat a polyg-
onal curve as a continuous map P : [1, n]→ Rd where P (i) = pi
for an integer i, and the i-th edge is linearly parametrized as
P (i + λ) = (1 − λ)pi + λpi+1, for integer i and 0 < λ < 1. A
re-parametrization σ : [0, 1] → [1, n] of P is any continuous,
non-decreasing function such that σ(0) = 1 and σ(1) = n. We
denote the subcurve between P (s) and P (t) by P [s, t], where
1 ≤ s ≤ t ≤ n. To compute the Fréchet distance between
P and Q with n and m vertices, respectively, Alt and Go-
dau [3] introduced the notion of free-space diagram. For any
δ > 0, we denote the free-space diagram between P and Q by
FSDδ(P,Q). This diagram has the domain of [1, n]× [1,m] and
it consists of (n − 1) × (m − 1) cells, where each point (s, t)
in the diagram corresponds to two points P (s) and Q(t). A
point (s, t) in FSDδ(P,Q) is called free if ‖P (s) − Q(t)‖ ≤ δ,
and blocked otherwise. The union of all free points is referred
to as the free space. The intervals induced by free space in
FSDδ(P (i), Q) for all i = 1, · · · , n is called free space inter-
vals of the range i × [1,m]. Fréchet matching between P and
Q is a pair of re-parameterizations (σ, θ) corresponding to an
xy-monotone path from (1, 1) to (n,m) within the free space
in FSDδ(P,Q). The Fréchet distance between two curves is de-
fined as δF (P,Q) = inf(σ,θ) max0≤t≤1 ‖P (σ(t)) − Q(θ(t))‖. Let
a = (x1, y1) and b = (x2, y2) be two points in FSDδ(P,Q) with
x1 ≤ x2 and y1 ≤ y2. We say b is reachable from a if there exists
a Fréchet matching from a to b within FSDδ(P,Q). A Fréchet
matching in FSDδ(P,Q) from a to b is also called a reachable
path between a and b denoted by P(a, b). If a = (1, 1) we de-
note it by P(1, b). Alt and Godau [3] compute a reachable path

Distance type Vertex-restricted Curve-restricted Non-restricted

−→
δgH(P, P ′) NP-hard [10] N/A N/A

−→
δgH(P ′, P)

O(n4) [10]
O(n2 logn)I

NP-hardI poly(n) [9]

δgH(P, P ′) NP-hard [10] N/A N/A

δgF (P, P ′)
O(mn5) [10]

O(n4)I (Section 3)
O(n3)I EREW PRAM

O(n) in R1I
O(n2 log2 n) in R2 [7]

O∗
(
n2 logn log log n

)
I

δgdF (P, P ′) O(n2) [5] N/A O(n logn) [5]

Table 1. Known results for the min-# problem under global and local distance measures. Our results are marked with I. In this paper
we only present the result for the vertex-restricted min–# problem under δgF (P, P ′). Our other results marked with I can be found in [11].

by propagating reachable points across free space cell bound-
aries in a dynamic programming manner, which requires the
exploration of the entire FSDδ(P,Q) and takes O(mn) time.

3 Vertex-Restricted Under δgF (P, P ′) in Rd

Let P = 〈p1, p2, · · · , pn〉 be a polygonal curve with n vertices,
where P : I → Rd with I = [1, n]. We construct a DAG G =
(V,E) such that V = {1, 2, · · · , n} and E = {(i, j) | 1 ≤ i <
j ≤ n}. Here, we consider each vertex v ∈ V to be embedded
at pv and each edge (u, v) ∈ E to be embedded as the straight
line segment shortcut pupv between pu and pv, parameterized
linearly by pupv(j) = v−j

v−upu + j−u
v−upv for all j ∈ [u, v]. For any

δ > 0 we now define the free space surface for P and G; see also
[2, 3] for the definitions of free space and free space surface.

Fig. 1. Schematic example of a free space surface.

Definition 1 (Strips and Spines). Let (u, v) ∈ E. The δ-
strip STδ(u, v) = {(i, j) | 1 ≤ i ≤ n, u ≤ j ≤ v, ||P (i) −
pupv(j)|| ≤ δ} is the free space between P and pupv. The strip is
defined as ST(u, v) = I × [u, v]. We have STδ(u, v) ⊆ ST(u, v).
The δ-spine SPδ(v) = {(v, i) | 1 ≤ i ≤ n, ||P (i) − pv|| ≤ δ}
is the free space between P and pv. The spine is defined as
SP(v) = I × v. We have SPδ(v) ⊆ SP(v).

For any edge (u, v) ∈ E, both spines centered at the vertices of
the edge are subsets of the strip: SPδ(u),SPδ(v) ⊆ STδ(u, v) and
SPδ(u) is a subset of all strips with respect to edges incident on
u. The free space surface of P and G, denoted by FSDδ(P,G),
is the collection of all strips (and spines) over all v ∈ V and
(u, v) ∈ E; see Fig. 1. Note that the edges in E are directed,
and hence any reachable path has to visit a sequence of spines
that corresponds to an increasing sequence of vertices in V .

The goal of our algorithm is to compute a reachable path
in the free space surface from (1, 1) to (n, n) that uses the
minimum number of strips. The main idea is to use dynamic
programming to propagate a reachable path with a minimum
number of strips from spine to spine. Each spine SP(v) = I × v
contains a sequence of free space intervals of SPδ(v). Let S ⊆ I
be the union of all interval endpoints of free space intervals of
SPδ(v) for all v ∈ V , projected onto I. The set S induces a
partition of I into intervals. For each v ∈ V let Lδ(v) be the
ordered list of free space intervals obtained by subdividing the
free space intervals of SPδ(v) with all points in S. We call the
intervals in Lδ(v), whose ending points are excluded, elementary
intervals; see Fig. 2.

2
3

4
5

6 7

I = [1, 9]

8
9

1

Fig. 2. Elementary intervals in each spine are created by overlaying
all free space intervals onto each spine.

We assume that elementary intervals in Lδ(v) are ordered in
increasing order of their starting point. When clear from the
context we may identify elementary intervals with their pro-
jections onto I, and use < and = to compare intervals in the
resulting total ordering of all elementary intervals along I.

We now extend the definition of a reachable path P(a, b)
whose starting and ending points are defined with respect to
two points a and b in FSDδ(P,Q) to the one that is defined with
respect to two elementary intervals r ∈ Lδ(u) and e ∈ Lδ(v) with
r ≤ e and u ≤ v. We denote a elementary reachable path from
an elementary interval r to elementary interval e by P(r, e).
L(P(r, e)) denotes the length of a reachable path that is the
number of strips visited by P(r, e). If an elementary reachable
path starts at (1, 1) and ends at e ∈ Lδ(v) we denote it by
P(1, e) for more simplicity in our notation.

We define the cost function φ : V × I → N for any point z =
(v, x) ∈ SPδ(v) with v ∈ V as φ(v, z) = minP(1,z) L(P(1, z)),
where the minimum ranges over all reachable paths P(1, z) in
the free space surface. If no such path exists then φ(v, z) =∞.
Lemma 1 below shows some properties of elementary intervals
and their sufficiency to propagate φ values across FSDδ(P,Q).

Lemma 1 (Elementary Intervals Properties). Let v ∈ V ,
a, b ∈ [1, n]. The following statements are true:

1. For any two points x = (v, a) and y = (v, b) with x, y ∈ e
and e ∈ Lδ(v), φ(v, x) = φ(v, y)

2. |Lδ(v)| ≤ 2n2 + n,

Since by Property 1 of Lemma 1, φ is fixed on each elementary
interval, we will write φ(v, e) for each elementary interval e ∈
Lδ(v) for all v ∈ V . A subset of Lδ(v) that consists of all points
that are reachable from an elementary interval r ∈ Lδ(u) with
u ≤ v is called a reachable interval in Lδ(v) from r denoted
by I(v, r). Note that not only elementary intervals but also
reachable intervals can be passed as the second argument of
the φ function since the domain is defined as V × I. Lemma 2
below shows a recursive formula for φ, which we will be used in
our dynamic programming algorithm.

Lemma 2. For all elementary intervals e ∈ Lδ(1): If e is
reachable from (1, 1) then φ(1, e) = 0, otherwise φ(1, e) = ∞.
For all v ∈ V \ {1} and all elementary intervals e ∈ Lδ(v):
φ(v, e) = minu≤v minr≤e φ(u, r) + 1 such that there is a reach-
able path from r ∈ Lδ(u) to e within STδ(u, v).

Algorithm 1 shows our dynamic programming algorithm that
computes φ using the recursive formula in Lemma 2. Our algo-
rithm consists of two main steps: (1) Initialization, (2) Propa-
gation.

We provide a more detailed description of the pseudocode in
the following:

1. Initialization (lines 1-5): We first compute the free space
surface induced by G and P by incorporating strips (and
spines) respecting the adjacency of strips in G. We compute

Algorithm 1: Compute Vertex-Restricted Min–# Simpli-
fication Under δgF (P, P ′) ≤ δ

1 Compute FSDδ(P,G);
2 for each v ∈ V :
3 Lδ(v)← ElemInterval(FSDδ(P,G),SPδ(v));
4 for each e ∈ Lδ(v) : φ(v, e) =∞;

5 for each e ∈ Lδ(1) that is reachable from (1, 1) :
φ(1, e) = 0;

6 for each v ∈ V − {1} :
7 Uv = ∅;
8 for each u ∈ {1, · · · , v} :
9 for each r ∈ Lδ(u) :

10 I(v, r)← ReachInterval(r, SPδ(v));

11 φ(v, I(v, r)) = φ(u, r) + 1;

12 Uv = I(v, r) ∪ Uv;

13 L ← Subdivide(Uv, Lδ(v));
14 for each e ∈ Lδ(v) :
15 φ(v, e) = min`∈L φ(v, `), where e ∈ `.
16 Return vertices of P ′ by tracing back on φ values.

all the elementary interval using the ElemInterval proce-
dure and set the cost of all of the elementary intervals to
infinity. For those elementary intervals that are reachable
from (1, 1) we set their φ value to zero (line 5).

2. Propagation (lines 6-15): We process spines in increas-
ing order according to their indices in V (except for the
first one). For a SPδ(v) we compute the reachable inter-
vals I(v, r) originating from any elementary interval r in
previous spines SPδ(u) for all, u = 1, · · · , v (line 10) by
means of a procedure called ReachInterval. The argu-
ments of this procedure are an elementary interval and a
spine. We give more details about this procedure below.
Next, we assign reachable interval I(v, r) the cost of r in-
cremented by one (line 11). We take the union of all reach-
able intervals and store them in a set Uv (line 12). Now,
we call Subdivide whose arguments are the set Uv and the
current spine SPδ(v). This procedure computes a subdivi-
sion of reachable intervals in Uv in terms of their φ-values
in which each subdivided interval acquires the minimum φ
value among all φ values of reachable intervals in Uv that
contain the subdivided interval. We finally assign the cost
of each subdivided interval to each elementary interval in
the current spine by linearly traversing both L and Lδ(v)
(see Fig. 3).

We now provide further details for the two procedures
ReachInterval and Subdivide.
Elementary Reachable Interval Procedure. The two ar-
guments of this procedure are an elementary interval r ∈ Lδ(u)
and a spine SPδ(v), u ≤ v. This procedure computes an interval
in Lδ(v) that contains all points in SPδ(v) that are reachable

from r within STδ(u, v). Note that this interval may contain
some non-reachable points as well. All we need is to find start
and end pointers of such a reachable interval in SPδ(v). This
can be done by using the algorithm proposed in Lemma 3 of [2].
We have the following lemma:

Lemma 3. Let u and v be two integers such that 1 ≤ u < v ≤
n. One can compute all ∪r∈Lδ(u)I(v, r) in O(|Lδ(u)|) time.

Subdivide Procedure. We are given a set of reachable in-
tervals Uv with their φ values. We need to efficiently compute
a subdivision of reachable intervals in Uv where each subdi-
vided interval takes the minimum value of φ from all subin-
tervals in Uv which overlap the respective subdivided interval.
To achieve this, we overlay all intervals in Uv vertically onto
the XY -coordinate plane in such a way that their start and
end points are (increasingly) encountered along the Y -axis and
their φ values are (increasingly) set along the X-axis. Due to the
monotonicity of reachable intervals their end and start points
are sorted along SPδ(v) and correspondingly along the Y -axis
as well. Now all we need is to compute the lower envelope (in
terms of φ values) over all intervals in Uv (see Fig. 3). The al-
gorithm described in Section 5 of [4] allows us to achieve this
efficiently for the case where the ordering in which the start
and end points of intervals are being visited along the Y -axis is
given. We have the following lemma:

Lemma 4. Let S = {S1, · · · , SN} be a set of segments in the
plane and the left-to-right order of endpoints of segments in S is
given. One can compute a lower envelope of size O(N) induced
by segments in S in O(N) time.

Applying the lemma to Uv yields a subdivision of intervals
into some subdivided subintervals each with their φ value (see
Fig 3). We immediately have the following lemma:

Lemma 5. For any v ∈ V \ {1}, Subdivide (Uv, Lδ(v)) com-
putes a list L as a subdivision of Uv in O(|Uv|) time, where
|Uv| = v ·

(
maxvu=1 |Lδ(u)|

)
and |L| = O(|Uv|).

Theorem 1. Algorithm 1 runs in time O(n4) using O(n3)
space.

4 Discussion

In this paper we provided a dynamic programming algorithm
for the vertex-restricted case under the global Fréchet distance
that significantly improves the running time of the algorithm
in [10]. It would be interesting to give a faster algorithm.

Acknowledgment. Carola Wenk and Majid Mirzanezhad ac-
knowledge the support of the National Science Foundation un-
der grant CCF-1637576.

u v

1

2

3

5

7

8

9

11

12

15

16

18

19

20

r4

r2

φ(u, r4) = 1

φ(u, r2) = 3

I(v, r2)

I(v, r4)

4

2

∞

2

4

∞

∞

v

1

2

3

5

7

8

9

11

12

15

16

18

19

20

∞

2

2

2

4

4

∞

φ− valuesLower Envelope

(a) (b) (c)

10

14

Y = φ− values

X = SPδ(v)

Fig. 3. In this example let Lδ(v) contain elementary intervals dis-
tributed within the interval I = [1, 20]. In (a) there are two reachable
intervals I(v, r2) and I(v, r4) of φ values 4 and 2, respectively. In (b)
the lower envelope technique results in having a subdivision of min
φ values on SPδ(v). Here the green curve indicates the lower enve-
lope of the intervals in terms of the φ values. In (c) each elementary
interval in Lδ(v) can take the min φ value obtained from (b).

References

1. P.K. Agarwal, S. Har-Peled, N. Mustafa, and Y. Wang. Near
linear time approximation algorithm for curve simplification. Al-
gorithmica, 42(3–4):203–219, 2005.

2. H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching planar maps.
Journal of Algorithms, 49(2):262––283, 2003.

3. H. Alt and M. Godau. Computing the Fréchet distance between
two polygonal curves. International Journal of Computational
Geometry and Applications, 5(1–2):75–91, 1995.

4. A. Asano, T. Asano, L. Guibas, J. Hershberger, and H. Imai.
Visibility of disjoint polygons. Algorithmica, 1(1–4):49–63, 1985.

5. S. Bereg, M. Jiang, W. Wang, B. Yang, and B. Zhu. Simplifying
3d polygonal chains under the discrete Fréchet distance. volume
4957, pages 630–641. LATIN, 2008.

6. S. Chan and F. Chin. Approximation of polygonal curves with
minimum number of line segments or minimum error. Intl. J.
Computational Geoemtry and Applications, 6(1):59–77, 1996.

7. L. Guibas, J. Hershberger, J. Mitchell, and J. Snoeyink. Approx-
imating polygons and subdivisions with minimum-link paths.
Intl. J. Computational Geometry and Applications, 3(4):383–
415, 1993.

8. H. Imai and M. Iri. An optimal algorithm for approximating
a piecewise linear function. Journal of Information Processing,
9(3):159–162, 1986.

9. I. Kostitsyna, M. Löffler, V. Polishchuk, and F. Staals. On the
complexity of minimum-link path problems. Journal of Compu-
tational Geometry, 8(2):80–108, 2017.

10. M. Kreveld, M. Löffler, and L. Wiratma. On optimal polyline
simplification using the Hausdorff and Fréchet distance. In 34th
International Symposium on Computational Geometry (SoCG
2018), volume 56, pages 1–14, 2018.

11. M. van Kerkhof, I. Kostitsyna, M. Löfller, M. Mirzanezhad,
and C. Wenk. On optimal min–# curve simplification problem.
http://arxiv.org/abs/1809.10269, 2018.

Threshold-Based Graph Reconstruction Using Discrete Morse

Theory∗

Brittany Terese Fasy1,2, Sushovan Majhi3, and Carola Wenk4

1School of Computing, Montana State University
2Department of Mathematical Sciences, Montana State University

3Department of Mathematics, Tulane University
4Department of Computer Science, Tulane University

Abstract

Discrete Morse theory has recently been applied in metric graph
reconstruction from a given density function concentrated around
an (unknown) underlying embedded graph. We propose a new
noise model for the density function to reconstruct a connected
graph both topologically and geometrically.

1 Introduction

Graph-like or filamentary structures are very com-
mon in science and engineering. Examples in-
clude road networks, sensor networks, and earth-
quake trails. With the advent of modern sam-
pling techniques, very large amounts of data,
sampled around such (often hidden) structures,
are becoming widely available to data analysts.

Problem Statement. Given a set of points
sampled around an unknown metric graph G em-
bedded in R2, output a metric graph Ĝ that has
the same homotopy type as G and has a small
Hausdorff distance to G.

Background. Graph reconstruction from noisy
samples has been studied extensively in the last
decade; see e.g., [1, 2, 4, 5]. One can typically
classify noise models for reconstruction problems
into two categories: Hausdorff noise and non-
Hausdorff noise. A sample S may not lie exactly
on G, however S is sampled from a very small

∗The authors would like to acknowledge the generous
support of the National Science Foundation under grants
CCF-1618469 and CCF-1618605.

offset of G. In this case, the Hausdorff distance
between the sample and ground truth is assumed
to be very small. We call such a noise Haus-
dorff noise. The situation becomes different in
the presence of outliers in S. If outliers in S are
far away from G, they contribute to an uncon-
trollably large Hausdorff distance. In this paper,
we aim at geometric reconstruction of Euclidean
graphs under non-Hausdorff noise model.

Several non-Hausdorff based graph reconstruc-
tion approaches use the density of the sample
points in the ambient space. In this density-
based reconstruction regime, a density function
over a rectangular grid of pixels in the plane is
computed from the raw sample S. There are sev-
eral ways one can define density on the planar
grid. A histogram computation or a kernel den-
sity estimate are usually very popular and easy
to implement in practice. Then, an appropriate
threshold is chosen to get a thickened graph as
the super-level set of the density at the threshold.
Some algorithms work by choosing this thresh-
old empirically, whereas some others, e.g., [1],
use systematic topological techniques like per-
sistent homology to choose a set of thresholds
just big enough to capture the desired topologi-

1

cal changes in the sub-level set filtration dictated
by the density function. While most of the pre-
vious approaches gained success in practice, not
much has been proved theoretically to guarantee
the desired topological or geometric correctness.
Also, the output is usually a region around the
underlying graph. Finally, one prunes the region
to extract a graph like structure from it using
some heuristic thinning algorithm.

Related Work. Our work is inspired by
the recent work by Dey et al. [2]. The authors
use a topological technique called discrete Morse
theory to extract the cycles of the underlying
graphG from a density function. They show that
if the density function satisfies a noise model,
that the authors call an (ω, β, ν)-approximation,
then the output Ĝ of their algorithm has the
same homotopy type as G. However, the noise
model is too simplistic to capture degree one ver-
tices of G. For this reason, the leaves or the
“hairs” of G cannot be reconstructed, resulting
in a large (undirected) Hausdorff distance be-
tween Ĝ and G.

Our Contribution. In order to overcome the
above mentioned limitations of the algorithm de-
veloped in [2], we propose a two-threshold based
noise model for the density function that is more
practical and that can localize all vertices of G.
Using different thresholds for the graph vertices
and the graph edges, we develop an algorithm
(Algorithm 1) that can output a reconstruction
that is also geometrically close to G. We prove
in Theorem 5.1 that the output of our algorithm
successfully captures both the topology and ge-
ometry of the underlying graph G.

2 Discrete Morse Theory

Let K be a finite simplicial complex. A dis-
crete vector field V on K is a collection of pairs
(τ (p), σ(p+1)) of simplices of K such that τ (p) <
σ(p+1) and each simplex of K appears in at most
one of such pair. Here, the symbol ‘<’ denotes
the face relation and the superscript denotes the
dimension of the simplex. A simplex σ ∈ K is

called critical if σ does not take part in any pair.
We define a V-path as a sequence of simplices

τ
(p)
0 , σ

(p+1)
0 , τ

(p)
1 , σ

(p+1)
1 , . . . , σ(p+1)

r , τ
(p)
r+1,

where r > 0, (τ
(p)
i , σ

(p+1)
i) ∈ V and τ

(p)
i+1 < σ

(p+1)
i

for all i ∈ {0, . . . , r}. The Morse cancellation of
a pair of critical simplices τ, σ takes place when
there is a unique V-path from a co-dimension
one face of τ to σ. This process of cancellation
reverses the vectors along that V-path to obtain
another vector field on K. For more details see
[3]. Finally, for a critical simplex σ we define its
stable manifold to be the union of the V-paths
that end at σ. Similarly, we define its unstable
manifold to be the union of the V-paths that
start at σ. For definitions and more details see
[2, 3].

3 Double Threshold

For ease of presentation, we define the noise model
in the smooth set-up. Let Ω be a planar rectan-
gle, and let G be a finite planar graph embedded
inside Ω. Let ω be a small positive number such
that Gω, the ω-offset of G, is contained in Ω and
has a deformation retraction onto G. Also, for
each vertex v of G, we call the ω-ball centered
at v the vertex region of v. Now, let Vω be the
union of all vertex regions of G. We call a density
function f on Ω an (ω, β1, β2, ν)-approximation
of G if

f(x) ∈

[β1, β1 + ν], if x ∈ Vω
[β2, β2 + ν], if x ∈ Gω − Vω
[0, ν], otherwise

where β1 > β2 + 2ν, β2 > 2ν. In this case, we
call β1 and β2 the thresholds for f . Throughout
this paper, we assume our density function is an
(ω, β1, β2, ν)-approximation. In practice, these
four parameters are unknown. However, in our
algorithm, we use a cut-off δ such that
ν < δ < min (β2 − ν, β1 − β2 − ν) and which is
assumed to be known to us.

In order to reconstruct G, the density is ex-
pected to assume very large values inside Gω rel-
ative to the outside region. Here, a small noise

2

Data: The discretized domain K, the
density function f , the threshold
δ.

Result: The reconstructed graph Ĝ.
1 Initialize V as the trivial vector field on

K.
2 Initialize Ĝ = ∅
3 Run persistence on the super-level set

filtration of f to get the persistence
pairs P (K).

4 for (σ, τ) ∈ P (K) with Pers(σ, τ) < δ
do

5 Try to perform a Morse cancellation
for the pair.

6 Update V.

7 end
8 for (v, e) ∈ P (K) and (e, t) ∈ P (K) with

persistence ≥ δ do

9 Ĝ = Ĝ ∪ { stable manifold of e}.
10 end

11 output Ĝ

Algorithm 1: Graph Reconstruction Al-
gorithm

or perturbation ν has been assumed. The above
mentioned two thresholds make this noise model
close to real-world applications involving the ex-
traction of road-networks from GPS trajectory
data. Because points along trajectories make the
density higher near the intersections than than
the edges, this noise model enables us to cor-
rectly reconstruct not only the topology but also
the geometry of G as shown in Theorem 5.1.

4 Algorithm

We devise our reconstruction algorithm, Algo-
rithm 1, by using discrete Morse cancellation
guided by persistence pairs.

Analysis of Algorithm We start with a dis-
cretization K of the planar rectangle Ω. For ex-
ample, K can be a planaer two-dimensional cubi-
cal complex. Let the density function f : K → R
be an (ω, β1, β2, ν)-approximation and let cutoff
ν < δ < min(β2 − ν,β1 − β2 − ν). Our goal is

to construct a discrete vector field V on K that
is associated to a discrete Morse function that
is much simpler than f . This way, we clean the
density function from the noise administered by
ν. We initialize V with the initial vector field
K in which all simplices are critical. In order
to remove non-genuine critical simplices, we run
persistence on the super-level set filtration of K
defined by f . Then, for each persistence pair
(σ, τ) with persistence smaller than δ, we try
to perform Morse cancellation of the Morse pair
(σ, τ) to update V . After the cancellations are
done, we get V which is a cleaner discrete gradi-
ent field on K. We can show that the resulting
V only contains genuine critical points, i.e., for
each graph vertex we have a critical vertex v of
K in its vertex region and for each edge e of
G we have a critical edge in V . All these crit-
ical vertices and edges will be contained in Gω.
Moreover, these critical vertices and edges are
characterized by their persistence being larger
than δ. Therefore, to extract the edges of G we
consider each edge of K with persistence > δ
and compute their stable manifolds. The union
of their stable manifolds is the reconstruction Ĝ.

5 Reconstruction Guarantees

The two thresholds help us to localize the crit-
ical vertices of the discrete gradient field inside
the vertex regions. The output Ĝ has the same
homotopy type as G as shown in the following
theorem.

Theorem 5.1 (Graph Reconstruction). If G is
a connected, embedded planar graph in a cubical
complex K and f is an (ω, β1, β2, ν)-
approximation of G then the output Ĝ of Algo-
rithm 1 has the same homotopy type as G. More-
over, dH(G, Ĝ) < ω.

Sketch of proof. We prove the homotopy type by
showing that G and Ĝ have the same first Betti
numbers, as the homotopy type of a connected
graph is completely characterized by its first
Betti number.

After the termination of Algorithm 1, by the
assumption on the density function, for each graph

3

Figure 1: A graph G with vertex and edge re-
gions. Critical edges and their stable manifolds
are shown in green.

vertex v′ of G we will have exactly one critical
vertex v of K inside the vertex region of v′. This
vertex is the local maximum of f inside the ver-
tex region of v′. For the persistence pairings in
P (K) with persistence larger than δ, a vertex v
of K has to be paired with either +∞ or with
a critical edge e of K from the edge region of a
graph edge e′ of G. And, e′ will be incident to v′,
as illustrated in Figure 5. Now, for each critical
edge e of K, e must lie inside one of the edge
regions of G. Moreover, for each each e′ of G we
have exactly one critical edge e of K. For the
pairings of P (K) with persistence larger than δ,
each edge e is either paired with a vertex v from
the vertex region of an incident edge or a triangle
t from the complement of Gω.

The one-to-one correspondence of the edges
of G and the critical edges of K and the vertices
of G and the critical vertices of K in V , shows
that the stable manifold of a critical edge e of K
that lies in the edge region of a graph edge e′ of G
will be a path in Gω joining the critical vertices
of the vertex regions of the end-points of e′. This
concludes that Ĝ and G will have the same first
Betti numbers. Also, since the critical vertices
and edges are localized inside the corresponding
regions we conclude that dH(G, Ĝ) < ω.

6 Discussion

The nature of our project is ongoing. The noise
model discussed in the paper is only a rough ap-
proximation of realistic noise models. We are
still in the process of finding a better noise model.
We also hope to find a condition on the density
that enables us to guarantee a small Fréchet dis-
tance between the edges of G and the reconstruc-
tion.

Acknowledgments The authors acknowledge
the generous support of the National Science Foun-
dation under grants CCF-1618469 and CCF-1618605.
The authors also thank Yusu Wang for her feed-
back.

References

[1] Ahmed, M., Fasy, B. T., Gibson, M., and Wenk,
C. Choosing thresholds for density-based map con-
struction algorithms. In Proceedings of the 23rd
SIGSPATIAL International Conference on Advances
in Geographic Information Systems (New York, NY,
USA, 2015), SIGSPATIAL ’15, ACM, pp. 24:1–24:10.

[2] Dey, T. K., Wang, J., and Wang, Y. Graph re-
construction by discrete Morse theory. In 34th In-
ternational Symposium on Computational Geometry
(2018), pp. 31:1–31:15.

[3] Forman, R. A user’s guide to discrete Morse theory.
Séminaire Lotharingien de Combinatiore, 48 (2002),
Art. B48c.

[4] Ge, X., Safa, I., Belkin, M., and Wang, Y. Data
skeletonization via reeb graphs. In Proceedings of the
24th International Conference on Neural Information
Processing Systems (USA, 2011), NIPS’11, Curran
Associates Inc., pp. 837–845.

[5] Wang, S., Wang, Y., and Li, Y. Efficient map re-
construction and augmentation via topological meth-
ods. In Proceedings of the 23rd SIGSPATIAL Inter-
national Conference on Advances in Geographic Infor-
mation Systems - GIS ’15 (2015), ACM Press, pp. 1–
10.

4

Characterizing Topological Discrepancies in Additive Manufacturing

MORAD BEHANDISH and SAIGOPAL NELATURI, PARC
Additive manufacturing (AM) enables enormous freedom for design of com-
plex structures. However, the process-dependent limitations that result in
discrepancies between as-designed and as-manufactured shapes are not fully
understood. The tradeoffs between infinitely many different ways to approx-
imate design by a manufacturable replica are even harder to characterize.

To support design for AM (DfAM), we quantify local discrepancies in-
troduced by AM processes, identify the detrimental deviations (if any) to
the original design intent, and prescribe modifications to the design and/or
process parameters to countervail their effects. Our focus in this work will
be on topological analysis. There is ample evidence in many applications that
preserving local topology (e.g., connectivity of beams in a lattice) is impor-
tant even when slight geometric deviations can be tolerated. We first present
a generic method to characterize local topological discrepancies due to ma-
terial under- and over-deposition in AM, and show how it captures various
types of defects in the as-manufactured structures. We use this information
to systematically modify the as-manufactured outcome within the limita-
tions of the 3D printer, which often comes at the expense of introducing
more geometric deviations (e.g., thickening a beam to avoid disconnection).
To reveal the full extent of intrinsic tradeoffs between geometric precision
and topological integrity, we use methods from persistent homology on a
parameterized family of as-manufactured alternatives based on the interplay
between machine resolution and allowance for over-deposition.

1 BACKGROUND
AM continues to reduce the limitations imposed on design by tra-
ditional fabrication. However, the notion of ‘features’ that are in
correspondence with traditional manufacturing (as in machining
holes, slots, grooves, etc.) is less relevant in AM, opening up an
entirely new set of challenges for DfAM. AM parts are often char-
acterized by complex structures to achieve improved performance
such as high stiffness per weight for structural support, high surface
area per volume for heat transfer, and so on. The as-manufactured
structures will differ from the as-designed in ways that are diffi-
cult to characterize, quantify, and correct. These deviations will
depend on machine and process parameters, as well as the choices
hard-coded into the algorithms applied to the as-designed model
by each printer’s software kit to slice, tessellate, path plan, etc. To
prevent unpredictable outcomes/failures, it is desirable to model
an as-manufactured structure with controlled deviations from the
as-designed in accordance with functional requirements. Among
the infinitely many manufacturable alternatives that closely approx-
imate a non-manufacturable design, it is desirable to find the one(s)
that minimize(s) deviations that matter the most from a functional
standpoint when it is not possible to preserve all of them.
In earlier studies, we have demonstrated methods to identify,

visualize, and correct non-manufacturable features in 3D printed
parts [Nelaturi et al. 2015; Nelaturi and Shapiro 2015]. Although
these methods provide visual and metrological information about
the deviations from intended design, they do not offer insight on
their topological consequences. Especially with many AM parts
(e.g., infill lattices and foams) the topological integrity of the struc-
ture has substantial functional significance—commonly even more
important than geometric precision. Sometime “small” deviations

(from a metric point of view) form the as-designed geometry may
lead to changes in topology that lead to compromised function such
as broken beams in load-bearing lattice microstructures, covered
tunnels in heat exchanger microchannels, filled cavities in porous
meta-materials, and so on. On the other hand, if the shape of lat-
tice beams are slightly deformed due to the stair-stepping effect of
layered fabrication, it may not matter as much as preserving the
connectivity. Similarly, addition/removal of tunnels and cavities
can impact performance (e.g., stress concentration under loads) or
post-processing (e.g., powder removal after laser sintering).

2 FROM AS-DESIGNED TO AS-MANUFACTURED
Practical limitations on the AM resolution and wall thickness in-
troduce geometric and topological discrepancies between the as-
designed target and as-manufactured outcome. Attempting to fab-
ricate designs that have smaller features than the printer’s mini-
mum manufacturable feature size will result in disconnected beams,
filled holes/tunnels, or hard-to-predict combinations (Fig. 2). The as-
manufactured part may eventually look nothing like the as-designed.
See, for example, Xometry’s results for the “wicked-small cylinder
test” using a number of AM processes.
In earlier work [Nelaturi et al. 2015; Nelaturi and Shapiro 2015],

we have developed methods to model as-manufactured structures
from a knowledge of as-design shape and AM parameters such
as manufacturing resolution and wall thickness. We have recently
used them to generate AM primitives in hybrid (i.e., combined ad-
ditive and subtractive) manufacturing processes [Behandish et al.
2018]. The basic model of an as-manufactured shape is obtained by
sweeping a minimum manufacturable neighborhood (MMN) along
an arbitrary motion that is allowed by the machine’s degrees of
freedom (DOF). Most 3D printers operate by 3D translations of
a printer head over the workpiece as it deposits a blob of mate-
rial that is modeled by the MMN (e.g., an ellipsoid or a cylindroid)
whose radii/height are determined by the printer resolution along
the slices and the build direction. Unless the as-designed shape is
perfectly sweepable by the MMN via an allowable motion, the as-
manufactured shape will differ. The challenge is to find the “best”
motion of the head whose sweep of MMN results in a shape as close
as possible to the as-designed target. The answer is not unique, as it
depends on the notion of closeness; i.e., the criteria based on which
the discrepancies are measured.
We use a measure-theoretic approach to define and compute as-

manufactured shapes. At every point in the 3D space inside the
printer workspace—which represents a hypothetical translational
configuration of the printer head—we obtain the overlap measure
between the stationary as-designed shape and a MMN instance
translated to the said point as the volume of the intersection region
between them. This measure can change from zero (no overlap) to
the total volume of the MMN (full overlap). We can think of this
measure as a real-valued field defined over the configuration space
(C−space) of relative translational motions between the two shapes.

Fig. 1. AM primitives obtained by varying the OMR between a moving MMN and the as-designed shape. The field of overlap values shown in (b) is computed
as a convolution of indicator functions of as-designed shape and MMN, whose superlevel-sets are used for to sweep the MMN.

Most commercial 3D printers operate with translational DOFs by
printing flat layers on top of each other. In such cases, the printability
analysis can be performed in at least two different ways:

(1) Bulk spatial analysis: A 3D field of overlap measures is
obtained between the 3D as-designed model and a 3D model
of the MMN, e.g., a blob of material that is representative of
a deposition unit. The layer thickness and build orientation
may or may not be encoded into the shape of the MMN. The
measure is the volume of intersections between 3D shapes.

(2) Layer-by-layer analysis: The as-designed model is sliced
along the build orientation into many layers that are a con-
stant distance apart, e.g., equal to printer’s known layer thick-
ness. For each 2D as-designed slice, a 2D field of overlap
measures is constructed by using a 2D model of the MMN,
e.g., nozzle or laser beam cross-section. The measure is the
surface area of intersections between 2D shapes.

The former provides a rapid approximation to the latter and allows
a high-level analysis in the absence of slicing parameters. The lat-
ter provides a more precise analysis, still at a relatively high-level
when 1D tool path and parametrization (e.g., G-code) or machine
digitization details are unknown or left out to simplify the analysis.

It has been shown that the overlap measure field can be computed
cumulatively for all translational motions by a cross-correlation of
indicator (i.e., characteristic) functions of the as-designed shape and
MMN in 3D (case (1) above) or their slices/cross-sections in 2D (case
(2) above). The cross-correlation is computed as a convolution of
the first field—indicator function of the as-designed shape—with a
reflection of the second field—indicator function of the MMN. The
convolution, in turn, can be computed rapidly on high-resolution
sampling/voxelization of the part using fast Fourier transforms (FFT)
[Kavraki 1995] which are highly optimized for GPU-accelerated im-
plementation. We have shown that this approach extends to group
convolutions over the Lie group of rigid motions (combined ro-
tations and translations) [Lysenko et al. 2010]. This is useful with
robotic 3D printers with higher-DOF—e.g., to enable support-free 3D
printing on adaptively reoriented platforms [Dai et al. 2018]—as well
as “multi-tasking” machines for hybrid manufacturing [Yamazaki
2016] that are becoming increasingly popular.

The different superlevel-sets of the cross-correlation field give
a family of totally-ordered sets (in terms of containment) in the
C−space (i.e., relative translations and/or rotations) Tλ ⊆ C:

Tλ =
{
τ ∈ C | µd[ΩD ∩ τB] ≥ λµd[B]

}
, for some 0 < λ < 1. (1)

The members of the family of motions {Tλ }0<λ<1 are distinguished
by the Lebesgue d−measure—volume for d = 3 (case (1) above) and
area for d = 2 (case (2) above)—of the intersection between the
as-designed shape and the displaced MMN τB = {τb | b ∈ B} that
changes between zero and total measure of the MMN. At every
choice of the overlap measure ratio (OMR) λ ∈ (0, 1), all configu-
rations of the MMN that lead to at least that OMR are included in
the set. For translational motion C � Rd, the extreme superlevel-
sets corresponding to λ → 1−, 0+ are the same as C−space obsta-
cle and its complement (i.e., free space), and can be computed by
Minkowski sum/difference, respectively, of the as-designed shape
with the MMN’s reflection [Nelaturi et al. 2015]:

lim
ϵ→0+

T(1−ϵ) = (ΩD⊕B
−1), and lim

ϵ→0+
T(0+ϵ) = (ΩD⊖B

−1). (2)

For other values in between, (ΩD ⊕ B−1) ⊆ Tλ ⊆ (ΩD ⊖ B−1),
which is computed as the superlevel-set of the convolution field
(1ΩD ∗ 1B−1) = µd[ΩD ∩ τB] for a threshold of λ∥1B ∥1 = λµd[B],
where 1ΩD , 1B : Rd → {0, 1} are indicator functions of the as-
designed shape and MMN, respectively. For general motions in-
cluding rotational DOFs, these notions generalize to Minkowski
products/quotients and group convolutions composed with lift-
ing/projection maps between the Euclidean 3−space and the Lie
group C = SE(d) � SO(d)⋊Rd [Lysenko et al. 2010].

For each configuration set (i.e., unparameterized motions), the as-
manufactured shape is obtained by sweeping theMMN along the set,
which is characterized as a morphological dilation ΩM = dil(T−1

λ ,B)

and can also be computed as a Minkowski sum (translation only) or
Minkowski product (general rigid motion) and streamlined using
convolutions in either C−space. The one-parametric family of as-
manufactured alternatives form a totally ordered set (in terms of
containment) bounded by the two extremes; namely,

(1) strict under-deposition (UD) (λ → 1−) in which the resulting
as-manufactured shape is the unique maximal (in terms of

2

containment) manufacturable shape strictly contained within
the as-designed shape; and

(2) strict over-deposition (OD) (λ → 0+) in which the result-
ing as-manufactured shape is a generalized offset of the as-
designed shape with the MMN, and contains the MMN with
a conservative margin.

There is a spectrum of possibilities for the as-manufactured shape
when the allowance is relaxed by choosing an arbitrary λ ∈ (0, 1).
Every decrease in the OMR grows the as-manufactured shape by
a non-uniform offset that depends on the local geometry of both
the as-designed shape and MMN. For translational motions, the UD
shape is a morphological opening (i.e., dilation of erosion) while the
OD shape is a double-offset (i.e., dilation of dilation). The continuous
family of as-manufactured shapes in between, parameterized by the
OMR, will have small geometric deviations from the as-designed
for small MMN. However, they can have dramatically different
topological properties (Fig. 1) which is the focus of next section.

3 TOPOLOGICAL ANALYSIS OF DEVIATIONS
We present a novel method to characterize the differences in basic
topological properties of an arbitrary as-designed shape ΩD and
an as-manufactured shape ΩM—including but not necessarily com-
puted by the methods described above—both of which are r-sets
[Requicha 1980]. We quantify the discrepancies in terms of the Euler
characteristic (EC) and Betti numbers (BN)—denoted and related by
E = b0 − b1 + b2 in 3D, respectively—of the different components
of the symmetric set difference of the two shapes. In 3D, the BN
correspond to the number of connected components, tunnels (i.e.,
through-holes), and voids/cavities, respectively.
It is worthwhile noting that comparing global EC/BN between

the as-designed and as-manufactured shapes does not provide much
insight on local topological discrepancies and what features are
responsible for them. For example, beams thinner than the MMN di-
ameter could break when using a under-deposition policy. However,
the structure may remain globally connected through other links
across (Fig. 2 (a)). Tunnels or cavities may be covered if they are
smaller than the MMN diameter when using an OD policy, but they
may be part of a larger hole or tunnel that remains topologically
intact (Fig. 2 (b)). In more complicated scenarios, multiple holes can
merge in strange ways while new holes appear, keeping the total
number of holes the same (Fig. 2 (c)). In general, the BN may remain
the same and cannot detect local topological discrepancies. Even
when they do change, their values provide no insight into what
features might have caused those changes and how to fix them by
either changing the design or the MMN.
To capture local effects, we investigate the connected compo-

nents of UD/OD sets (regularized set differences of ΩD and ΩM).
Each connected component, paired with the portion of its boundary
that connects the component to the common region (ΩD ∩ ΩM)—
called UD/OD ‘cut boundaries’ (Fig. 3)—is called a ‘UD/OD deviation
feature’ (or ‘feature’ for short):⋃

1≤i≤nU
Ui = (ΩD −∗ ΩM), (Ui ∩Uj) = ∅ if i , j, (3)⋃

1≤i≤nO
Oi = (ΩM −∗ ΩD), (Oi ∩O j) = ∅ if i , j, (4)

Fig. 2. The global BN (only b0 and b1) are shown for a few simple 2D
examples of as-designed vs. as-manufactured shapes with UD/OD policies.

Fig. 3. For arbitrary changes in the global topology of the disturbed shape,
we identify the deviations in terms of contributions of local UD/OD features.

where the asterisk implies “regularized” set difference [Tilove and
Requicha 1980]. We prove that the total difference in ECs of ΩD
and ΩM can be obtained from a sum of contributions of individual
UD/OD features:

E[ΩM] − E[ΩD] = +
∑

1≤i≤nO

(
E[Oi] − E[Oi ∩ ∂ΩD]

)
(5)

−
∑

1≤i≤nU

(
E[Ui] − E[Ui ∩ ∂ΩM]

)
. (6)

3

Fig. 4. The OMR superlevel-sets for λ = 1.0, 0.9, 0.8 (top), corresponding as-
manufactured sweep (middle) and their deviation from as-designed (bottom):
UD (blue) and OD (red) features; for a topologically optimized quadcopter.

Each feature’s contribution (i.e., the terms on the right-hand side
of (6)) is computed by subtracting the EC of its cut boundary from
the EC of its solid part The proof will be presented in the full paper.
A UD/OD feature is called ‘simple’ if its contribution is zero. If a
feature is both simple and simply-connected, the deviation due to
its under-/over-deposition bears no topological significance. The
features that are simple but not simply-connected may still con-
tribute nonzero BNs (in spite of zero sum into EC) hence must be
partitioned further into simply-connected pieces, which makes (6)
slightly more complicated. It will be discussed in the full paper but
not here due to limited space.

Figure 4 illustrates the manufacturability analysis for a topologi-
cally optimized quadcopter frame for different OMR values. A full
report of local topological discrepancies is generated (not shown)
using (6). We also developed an algorithm for scalable computa-
tion (i.e., embarrassing parallelization) of EC for high-resolution
sparse voxelization on OpenVDB [Museth 2013]. The details of the
algorithm will be given in the full paper.
Once the problematic features are identified (forward problem),

they can be repaired by either changing the design or AM process pa-
rameters (e.g., localizing OMR) by geometric planning/optimization
(inverse problem). Details related to the iterative solution of inverse
problem are beyond the scope of this abstract.

4 PERSISTENT MANUFACTURING FEATURES
The above analysis detects spatial distribution of topological discrep-
ancies. It also provides useful information to make local changes
to the design and/or MMN for eliminating the issues one-at-a-time.
However, this analysis cannot detect how important each of differ-
ent feature contributions are relative to one another. It considers a
single as-manufactured outcome; hence provides little insight on
their persistence across the spectrum of as-manufactured variants
that one can obtain by changing the 3D printer specs or deposition

policies—e.g., by changing the shape/size of MMN, threshold on
OMR, etc. If we think of changes in a one-parametric family of
as-manufactured shapes as a continuous evolution along time-axis,
what we need in addition is a temporal analysis.

We use persistent homology [Edelsbrunner and Morozov 2013]
with two different filtrations:

(1) For a fixed deposition policy (e.g., constant OMR in cross-
correlation superlevel-set formulation), a filtration is provided
by changing the size of the MMN. This can be done by ap-
plying uniform scaling on a fixed-shape MMN, but any other
shape parameterization that corresponds to a realistic family
of growing MMNs for one or more 3D printers can be used.

(2) For a fixed MMN shape/size (e.g., fixed 3D printer specs),
a filtration is provided by changing the deposition policy.
This can be done by using the OMR (between 0 and 1) as the
filtration parameter, but any other filtering that produces a
total ordering can be used.

More recent results in persistent homology with multi-variate filtra-
tions [Cerri et al. 2013] can be applied to analyze the simultaneous
changes in both (1) MMN shape/size and (2) deposition policy. For
now, we focus on a single-parametric filtration that changes one
parameter while keeping the other fixed. To speed up the relatively
expensive computation, we run persistence analysis only on local
UD/OD features that were identified problematic in the previous
section. Details and results will be presented in the full paper.

REFERENCES
Behandish, M., S. Nelaturi, and J. de Kleer

2018. Automated process planning for hybrid manufacturing. Computer-Aided
Design, 102:115–127.

Cerri, A., B. D. Fabio, M. Ferri, P. Frosini, and C. Landi
2013. Betti numbers in multidimensional persistent homology are stable functions.
Mathematical Methods in the Applied Sciences, 36(12):1543–1557.

Dai, C., C. C. Wang, C. Wu, S. Lefebvre, G. Fang, and Y.-J. Liu
2018. Support-free volume printing by multi-axis motion. ACM Transactions on
Graphics (TOG), 37(4):134.

Edelsbrunner, H. and D. Morozov
2013. Persistent homology: Theory and practice.

Kavraki, L. E.
1995. Computation of configuration-space obstacles using the fast Fourier transform.
IEEE Transactions on Robotics and Automation, 11(3):408–413.

Lysenko, M., S. Nelaturi, and V. Shapiro
2010. Group morphology with convolution algebras. In Proceedings of the 14th ACM
symposium on solid and physical modeling, Pp. 11–22. ACM.

Museth, K.
2013. VDB: High-resolution sparse volumes with dynamic topology. ACM Transac-
tions on Graphics (TOG), 32(3):27.

Nelaturi, S., W. Kim, and T. Kurtoglu
2015. Manufacturability feedback and model correction for additive manufacturing.
Journal of Manufacturing Science and Engineering, 137(2):021015.

Nelaturi, S. and V. Shapiro
2015. Representation and analysis of additively manufactured parts. Computer-Aided
Design, 67:13–23.

Requicha, A. A. G.
1980. Representations for rigid solids: Theory, methods, and systems. ACM Com-
puting Surveys, 12(4):1–78.

Tilove, R. B. and A. A. G. Requicha
1980. Closure of Boolean operations on geometric entities. Computer-Aided Design,
12(5):219–220.

Yamazaki, T.
2016. Development of a hybrid multi-tasking machine tool: Integration of additive
manufacturing technology with CNC machining. Procedia CIRP, 42:81–86.

4

FWCG 2018, Queens College, CUNY, October 26–27, 2018

Condensation for the Approximate Nearest Neighbor rule

Alejandro Flores V.∗ David M. Mount†

Abstract

The problem of Nearest Neighbor (NN) condensation
aims to reduce the training set of a NN rule classifier
while maintaining its classification accuracy. Although
many condensation techniques have been proposed, few
bounds on the amount of reduction achieved are known.
Moreover, most techniques focus on preserving the clas-
sification accuracy on exact NN queries, ignoring the ef-
fect of condensation on approximate NN queries. In this
paper, we present one of the first theoretical guarantees
for condensation algorithms. We propose an algorithm
called α-MSS, and provide upper-bounds on the size of
the selected subset. Furthermore, we present sufficient
conditions to correctly classify query points using ap-
proximate NN search on α-MSS.

1 Introduction

In non-parametric classification, a training set P is
given, consisting of n points in a metric space (X , d).
Each point p ∈ P is also given a label l(p), indicating
its membership within one of a set of discrete classes.
Given an unlabeled query point q ∈ X , the goal of a
classifier is to predict q’s label (i.e., to classify q) us-
ing the training set P. The Nearest Neighbor (NN) rule
is one such classification technique, classifying a query
point q with the label of its closest point in P according
to the metric d.

While the NN rule exhibits good classification accu-
racy, both experimentally and theoretically [11, 4, 5],
it is often criticized due to its high space and time
complexities. Clearly, P must be stored to answer NN
queries, and the time required for such queries depends,
to a large degree, on the size and dimensionality of the
data. These drawbacks motivate the following ques-
tion: is it possible to replace the training set P with a
significantly smaller subset without affecting the clas-
sification accuracy under the NN rule? This process is
called Nearest Neighbor (NN) condensation.

Preliminaries Given any point p ∈ P, define an enemy
to be any point in P of different class as p. The nearest
enemy (NE) of p, denoted NE(p), is the closest such
point, and its distance from p, called the NE distance,

∗University of Maryland, College Park, afloresv@cs.umd.edu
†University of Maryland, College Park, mount@cs.umd.edu

is denoted dNE(p) = d(p,NE(p)). Similarly, denote the
NN distance as dNN(p) = d(p,NN(p)).

When P is a point set in Euclidean space, consider the
Delaunay triangulation of P. Any point p ∈ P with at
least one enemy neighbor in this triangulation is called
a border point, and otherwise is called an internal point.

A subset R ⊆ P is said to be consistent if and only if
∀ p ∈ P its nearest neighbor in R is strictly closer than
its nearest enemy in R. Intuitively, R is consistent iff
every point of P is correctly classified using under the
NN rule over R. The NN condensation problem involves
finding an (ideally small) consistent subset of P.

Related work There are other criteria for condensa-
tion. A subset R ⊆ P is selective if and only if ∀ p ∈ P
its NN in R is closer to p than its NE in P. Clearly se-
lectivity implies consistency, as the NE distance in R of
any point is at least its NE distance in P.

In the Euclidean case, another natural criteria is
known as Voronoi condensation [14]. It consists of se-
lecting the subset of all border points of P, as these
points completely characterize the boundaries between
sets of points of different classes. Note that, while a
consistent subset can only guarantee the correct classi-
fication of points of P, Voronoi condensation guarantees
the correct classification of any query point. For the pla-
nar case, an output-sensitive algorithm was proposed [3]
with O(n log k) time complexity, where k is the number
of border points of P. Unfortunately, it is not known
how to generalize this algorithm to higher dimensions,
and a straightforward algorithm for Voronoi condensa-
tion would be impractical in high-dimensional spaces.

In general, it has been shown that the problems of
computing consistent and selective subsets of minimum
cardinality are both NP-complete [15, 16]. Thus, most
research on the problem has focused on the performance
of heuristics for finding subsets with these properties.
For comprehensive surveys, see [12, 13, 9].

CNN (Condensed Nearest Neighbor) [7] was the first
algorithm proposed for computing consistent subsets.
Even though it has been widely used in the literature,
CNN suffers from several drawbacks: its running time
is cubic in the worst-case, and the resulting subset is
order-dependent, meaning that the result is determined
by the order in which points are considered by the al-
gorithm. Alternatives include FCNN (Fast CNN) [1]
and MSS (Modified Selective Subset) [2], which pro-
duce consistent and selective subsets respectively. Both

28th Fall Workshop on Computational Geometry, 2018

(a) Set P (104 pts) (b) CNN (281 pts) (c) FCNN (222 pts) (d) MSS (233 pts)

(e) 0.1-MSS (300 pts) (f) 0.5-MSS (540 pts) (g) 2-MSS (1395 pts) (h) 5-MSS (2894 pts)

Figure 1: An illustrative example of the subsets selected by CNN, FCNN, MSS, and α-MSS (with α = {0.1, 0.5, 2, 5}),
from an initial training set P of 104 points. While most algorithms focus on selecting border points, or points near
the decision boundaries of P, α-MSS also selects internal points in a systematic way.

algorithms run in O(n2) worst-case time, and are order-
independent. These algorithms are considered the state-
of-the-art in the NN condensation problem, subject to
achieving these properties. Unfortunately, to the best
of our knowledge, no bounds are known for the size of
the subsets generated by any of these heuristics.

More recently, an approximation algorithm called
NET [6] was proposed, along with almost matching
hardness lower bounds. NET produces an γ-net of P,
with γ equal to the minimum NE distance in P, which
results in a consistent subset. In general, such scheme
allows very little room for condensation, as only a few
points can be covered with γ-balls, and therefore re-
moved. Thus, while NET has good worst-case perfor-
mance, the resulting subset can be too large to be of
any practical value.

Drawbacks of NN condensation In general, NN con-
densation algorithms focus on selecting border points,
or points close to the decision boundaries. Specially, as
illustrated in Figure 1(c) and (d), this is the case with
state-of-the-art algorithms like FCNN and MSS. By def-
inition, these border points completely characterize the
decision boundaries of P, and therefore, are key in main-
taining the classification accuracy of the NN rule after
condensation.

However, in practice, nearest neighbors are not com-

puted exactly, but rather approximately. Given ε > 0,
an ε-ANN query returns any point whose distance from
the query point is within a factor of (1+ε) times the true
NN distance. If the condensation is performed without
consideration of the approximation error in NN queries,
points may be misclassified. This notion is formalized
in [10] as the chromatic density of a query point, de-

fined as δq = dNE(q)−dNN(q)
dNN(q)

. If δq > ε, q will always be

correctly classified by ε-ANN queries. Therefore, by re-
moving internal points, these heuristics can significantly
reduce the chromatic density of a query point, and thus,
decrease the classification accuracy after condensation,
when using ANN queries.

Contributions In this paper, we present theoretical
guarantees on both new and existing condensation tech-
niques. The following is a summary of our results.

• We propose α-MSS, a parameterized version of
MSS designed to address the drawbacks of exist-
ing condensation techniques.
• We describe sufficient conditions to correctly clas-

sify query points using ANN queries on α-MSS.
• We provide an upper-bound on the size of α-MSS

for doubling spaces. In Euclidean space, the upper-
bound is further improved, reducing the depen-
dency on the dimensionality for α-MSS and MSS.

FWCG 2018, Queens College, CUNY, October 26–27, 2018

2 Approximate NN Condensation

Let’s consider a state-of-the-art heuristic algorithm for
the problem of NN condensation, known as MSS or
Modified Selective Subset (see Algorithm 1). This al-
gorithm is rather simple; the points of P are examined
in increasing order with respect to their NE distance,
and any point that fails to satisfy the conditions re-
quired of a selective subset (defined above) is added to
the resulting subset.

Algorithm 1: Modified Selective Subset

Input: Initial training set P
Output: Condensed training set MSS ⊆ P

1 Let {pi}ni=1 be the points of P sorted in increasing
order of NE distance dNE(pi)

2 MSS← ∅
3 foreach pi ∈ P, where i = 1 . . . n do
4 if ∀ r ∈ MSS, d(pi, r) ≥ dNE(pi) then
5 MSS← MSS ∪ {pi}

6 return MSS

This algorithm tends to select border points, or points
close to the decision boundaries of P (see Figure 1(d)).
As described before, excluding internal points from the
selection, affects the classification accuracy when per-
forming ANN queries after condensation. Therefore, we
propose to adapt MSS to address these drawbacks.

2.1 The α-MSS algorithm

Our algorithm is a parameterized version of MSS, called
α-MSS. Given a parameter α ≥ 0, the underlying idea is
that every point removed from P will always be correctly
classified using α-ANN queries on the selected subset
(see Algorithm 2).

Algorithm 2: α-Modified Selective Subset

Input: Initial training set P, and value α ≥ 0
Output: Condensed training set α-MSS ⊆ P

1 Let {pi}ni=1 be the points of P sorted in increasing
order of NE distance dNE(pi)

2 α-MSS← ∅
3 foreach pi ∈ P, where i = 1 . . . n do
4 if ∀ r ∈ α-MSS, (1 +α) · d(pi, r) ≥ dNE(pi) then
5 α-MSS← α-MSS ∪ {pi}

6 return α-MSS

From the algorithm’s definition, clearly 0-MSS equals
MSS. Likewise, when α goes to ∞, the only way to
satisfy the given condition is to include all points of P.
Therefore, ∞-MSS equals P.

Just like MSS, α-MSS meets some basic properties
that make it comparable with other state-of-the-art al-
gorithms for NN condensation.

Theorem 1 α-MSS is a selective (therefore consistent)
subset of P, can be computed in worst-case O(n2) time,
and it’s order-independent.

2.2 Guarantees on Classification Accuracy

By design, we know that for any point p ∈ P, the NN
of p in α-MSS is at least (1 + α) times closer than its
NE in P. Meaning the chromatic density of p ∈ P is at
least α. This observation is key in order to analyze the
chromatic density of other points, after condensation.

Theorem 2 Consider a query point q ∈ X of chro-
matic density δq with respect to P and chromatic density
δ′q with respect to α-MSS. Then,

δ′q ≥
αδq − 2

δq + α+ 3

Corollary 1 Let q ∈ X be a query point with chromatic
density δq = Ω(1/(α − ε)) with respect to P, for α > ε
upper-bounded by some constant. Then q is correctly
classified using by an ε-ANN query on α-MSS.

This implies that, by fixing the values for α and ε, we
know the sufficient conditions for a query point to be al-
ways correctly classified by ε-ANN queries over α-MSS.
On the contrary, from the following result, we can fix
the lower bounds on the chromatic densities of the query
points we want to correctly classify (both before and af-
ter condensation), and calculate the value of α needed.

Corollary 2 Let q ∈ X be a query point with chro-
matic density δq > ε with respect to P, for some value
of ε upper-bounded by a constant. (By definition, q is
correctly classified by an ε-ANN query on P.) Consider
some value ε′ ≤ ε, and set α = Ω(1/(ε−ε′)). Then, the
chromatic density of q with respect to α-MSS is δ′q > ε′,
implying that q is also correctly classified by an ε-ANN
query on α-MSS.

3 Upper-bounds on condensation size

One of the most significant shortcomings in research on
practical condensation techniques is the lack of theoreti-
cal results on the sizes of the selected subsets. Typically,
the performance of these heuristics has been established
experimentally.

We establish our bounds with respect to the size of
a well-known and structured solution: the set of all NE
points of P. Additionally, these bounds depend on the
spread ∆ of P, which is defined to be the ratio of the
largest to smallest pairwise distances in P, and the dou-
bling dimension ddim(X) of the metric space [8].

28th Fall Workshop on Computational Geometry, 2018

Theorem 3 (Size of α-MSS in doubling spaces)
Consider a point set P of spread ∆ in a metric space
(X , d) with bounded doubling dimension ddim(X). Let
κ be the number of NE points of P. Then,

|α-MSS| ≤ κ
⌈

log ∆

log α+2
α+1

⌉
O
(
αddim(X)+1

)

Thus, for constant α and ddim(X), the size of α-MSS
is O(κ log ∆). This bound follows from a charging ar-
gument on each NE point in P, where we consider the
number of points in α-MSS whose NE is the same. By
partitioning these points according to their NE distance,
we show that points in α-MSS can’t be to close. Fi-
nally, we use a known packing argument for doubling
spaces [6], and the upper-bound follows.

The Euclidean case When the underlying space is Eu-
clidean, the arguments used on doubling spaces can be
further improved. These results rely on a packing ar-
gument dependent on the minimum angle between any
two selected points who share the same NE.

Theorem 4 (Size of MSS in Euclidean space)
Let P ⊆ Rd be a point set in Euclidean space. Let κ be
the number of NE points of P. Then,

|MSS| = κ O((3/π)d−1)

For constant d, the size of MSS is O(κ). Moreover,
we can show that the number of NE points of P is at
most the number of border points of P (i.e., κ ≤ k).
Recall that Voronoi condensation computes the set of
all border points of P, which is of size k. Then, the size
of MSS is O(k) for constant d.

Theorem 5 (Size of α-MSS in Euclidean space)
Let P ⊆ Rd be a point set in Euclidean space of spread
∆. Let κ be the number of NE points of P. Then,

|α-MSS| ≤ κ

log ∆

log (α+1)2

α(α+2)

O(αd−1)

For constant α and d, the size of α-MSS is O(κ log ∆).

References

[1] F. Angiulli. Fast nearest neighbor condensation for
large data sets classification. Knowledge and Data
Engineering, IEEE Transactions on, 19(11):1450–1464,
2007.

[2] R. Barandela, F. J. Ferri, and J. S. Sánchez. Decision
boundary preserving prototype selection for nearest
neighbor classification. International Journal of Pat-
tern Recognition and Artificial Intelligence, 19(06):787–
806, 2005.

[3] D. Bremner, E. Demaine, J. Erickson, J. Iacono,
S. Langerman, P. Morin, and G. Toussaint. Output-
sensitive algorithms for computing nearest-neighbour
decision boundaries. In F. Dehne, J.-R. Sack, and
M. Smid, editors, Algorithms and Data Structures: 8th
International Workshop, WADS 2003, Ottawa, On-
tario, Canada, July 30 - August 1, 2003. Proceed-
ings, pages 451–461, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg.

[4] T. Cover and P. Hart. Nearest neighbor pattern clas-
sification. IEEE Trans. Inf. Theor., 13(1):21–27, Jan.
1967.

[5] L. Devroye. On the inequality of cover and hart in
nearest neighbor discrimination. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, (1):75–78,
1981.

[6] L.-A. Gottlieb, A. Kontorovich, and P. Nisnevitch.
Near-optimal sample compression for nearest neighbors.
In Advances in Neural Information Processing Systems,
pages 370–378, 2014.

[7] P. Hart. The condensed nearest neighbor rule (cor-
resp.). IEEE Trans. Inf. Theor., 14(3):515–516, Sept.
1968.

[8] J. Heinonen. Lectures on analysis on metric spaces.
Springer Science & Business Media, 2012.

[9] N. Jankowski and M. Grochowski. Comparison of
instances selection algorithms I. Algorithms survey.
In Artificial Intelligence and Soft Computing-ICAISC
2004, pages 598–603. Springer, 2004.

[10] D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y.
Wu. Chromatic nearest neighbor searching: A query
sensitive approach. Computational Geometry, 17(3):97
– 119, 2000.

[11] C. J. Stone. Consistent nonparametric regression. The
annals of statistics, pages 595–620, 1977.

[12] G. Toussaint. Open problems in geometric methods for
instance-based learning. In J. Akiyama and M. Kano,
editors, JCDCG, volume 2866 of Lecture Notes in Com-
puter Science, pages 273–283. Springer, 2002.

[13] G. Toussaint. Proximity graphs for nearest neighbor
decision rules: Recent progress. In Progress, Proceed-
ings of the 34th Symposium on the INTERFACE, pages
17–20, 2002.

[14] G. T. Toussaint, B. K. Bhattacharya, and R. S. Poulsen.
The application of Voronoi diagrams to non-parametric
decision rules. Proc. 16th Symposium on Computer Sci-
ence and Statistics: The Interface, pages 97–108, 1984.

[15] G. Wilfong. Nearest neighbor problems. In Proceedings
of the Seventh Annual Symposium on Computational
Geometry, SCG ’91, pages 224–233, New York, NY,
USA, 1991. ACM.

[16] A. V. Zukhba. NP-completeness of the problem of pro-
totype selection in the nearest neighbor method. Pat-
tern Recog. Image Anal., 20(4):484–494, Dec. 2010.

Exact fast parallel intersection of large 3-D triangular meshes
(extended abstract)∗

Salles V. G. Magalhães
Universidade Fed. de Viçosa

Viçosa, MG, Brazil
salles@ufv.br

W. Randolph Franklin
Rensselaer Polytechnic Institute

Troy, NY, USA
mail@wrfranklin.org

Marcus V.A. Andrade
Universidade Federal de Viçosa

Minas Gerais, Brasil
marcus.ufv@gmail.com

ABSTRACT
We present 3D-EPUG-Overlay, a fast, exact, parallel, memory-
efficient, algorithm for computing the intersection between two
large 3-D triangular meshes with geometric degeneracies. Appli-
cations include CAD/CAM, CFD, GIS, and additive manufacturing.
3D-EPUG-Overlay combines 5 separate techniques: multiple pre-
cision rational numbers to eliminate roundoff errors during the
computations; Simulation of Simplicity to properly handle geo-
metric degeneracies; simple data representations and only local
topological information to simplify the correct processing of the
data and make the algorithm more parallelizable; a uniform grid to
efficiently index the data, and accelerate testing pairs of triangles for
intersection or locating points in the mesh; and parallel program-
ming to exploit current hardware. 3D-EPUG-Overlay is up to 101
times faster than LibiGL, and comparable to QuickCSG, a parallel in-
exact algorithm. 3D-EPUG-Overlay is also more memory efficient.
In all test cases 3D-EPUG-Overlay’s result matched the reference
solution. It is freely available for nonprofit research and education
at https://github.com/sallesviana/MeshIntersection . The full ver-
sion of this paper was presented at the 27th International Meshing
Roundtable, October 1–5, 2018, Albuquerque, NM, USA. It is cur-
rently online at https://project.inria.fr/imr27/files/2018/09/1016.pdf.

1 INTRODUCTION
The classic problem of intersecting two 3-Dmeshes has been a foun-
dational component of CAD systems for some decades. However,
as data sizes grow, and parallel execution becomes desirable, the
classic algorithms and implementions now exhibit some problems.
1. Roundoff errors. Floating point numbers violate most of the ax-

ioms of an algebraic field, e.g., (a + b) + c , a + (b + c). These
arithmetic errors cause topological errors, such as causing a
point to be seen to fall on the wrong side of a line. Those in-
consistencies propagate, causing, e.g., nonwatertight models.
Heuristics exist to ameliorate the problem, and they work, but
only up to a point. Larger datasets mean a larger probability of
the heuristics failing.

2. Special cases (geometric degeneracies). These include a vertex of
one object incident on the face of another object. In principle,
simple cases could be enumerated and handled. However, some
widely available software fails.

3. Another problem is that current data structures are too complex
for easy parallelization. Efficient parallelization prefers simple
regular data structures, such as structures of arrays of plain old
datatypes That disparages pointers, linked lists, and trees.

∗

Some components of 3D-EPUG-Overlay have been presented
earlier. PinMesh preprocesses a 3D mesh so that point locations
can be performed quickly [24]. EPUG-Overlay overlays 2D meshes
[23].
Background: Kettner et al [21] studied failures caused by roundoff
errors in geometric problems. They also showed situations where
epsilon-tweaking failed. Snap rounding arbitrary precision seg-
ments into fixed-precision numbers, Hobby [19], can also gener-
ate inconsistencies and deform the original topology. Variations
attempting to get around these issues include de Berg et al [6],
Hersberger [18], and Belussi et al [2]. Controlled Perturbation (CP),
Melhorn [27], slightly perturbs the input to remove degeneracies
such that the geometric predicates are correctly evaluated even
using floating-point arithmetic. Adaptive Precision Floating-Point,
Shewchuk [30], exactly evaluates predicates (e.g. orientation tests)
using the minimum necessary precision.

Exact Geometric Computation (EGC), Li [22], represents mathe-
matical objects using algebraic numbers to perform computations
without errors. However this is slow.

One technique to accelerate algorithms based on exact arithmetic
is to employ arithmetic filters and interval arithmetic, Pion et al
[29], such as embodied in CGAL [4].
Current freely available implementations: One technique for
overlaying 3-D polyhedra is to convert the data to a volumetric
representation (voxelization), perhaps stored as an octree, Meagher
[26], and then perform the overlay using the converted data. For
exactly computing overlays, a common strategy is to use indexing
to accelerate operations such as computing the triangle-triangle
intersection. For example, Franklin [12] uses a uniform grid to
intersect two polyhedra, Feito et al [11] and Mei et al [28] use
octrees, and Yongbin et al [32] use Oriented Bounding Boxes trees
(OBBs) to intersect triangulations.

Another algorithm that does not guarantee robustness is Quick-
CSG, Douze et al [9], which is designed to be extremely efficient.
QuickCSG employs parallel programming and a k-d-tree index to
accelerate the computation. However, it does not handle special
cases (it assumes vertices are in general position), and does not han-
dle the numerical non-robustness from floating-point arithmetic,
Zhou et al [33]. To reduce errors caused by special cases, QuickCSG
allows the user to apply random numerical perturbations to the
input, but this has no guarantees.

Although small errors may sometimes be acceptable, they accu-
mulate if several inexact operations are performed in sequence. This
gets even worse in CAD and GIS where it is common to compose
operations. For use when exactness is required, Hachenberger et al
[17] presented an algorithm for computing the exact intersection
of Nef polyhedra.

Fall Workshop in Computational Geometry, Nov 2018, NYC Salles V. G. Magalhães, W. Randolph Franklin, and Marcus V.A. Andrade

Bernstein et al [3] presented an algorithm that tries to achieve
robustness in mesh intersection by representing the polyhedra
using binary space partitioning (BSP) trees with fixed-precision
coordinates. It can intersect two such polyhedra by only evaluating
fixed-precision predicates. However, in 3D, the BSP representation
often has superlinear size, because the partitioning planes intersect
so many objects. Also, converting BSPs back to more widely used
representations (such as triangular meshes) is slow and inexact.

Recently, Zhou [33] presented an exact and parallel algorithm
for performing booleans on meshes. The key is to use the concept
of winding numbers to disambiguate self-intersections on the mesh.
That algorithm is freely available and distributed in the LibiGL
package, Jacobson et al [20]. Its implementation employs CGAL’s
exact predicates. The triangle-triangle intersection computation is
also accelerated using CGAL’s bounding-box-based spatial index.
LibiGL is not only exact, but also much faster than Nef Polyhedra.
However, it is still slower than fast inexact algorithms such as
QuickCSG.

2 OUR TECHNIQUES
Our solution to the above problems combines the following five
techniques (aka engineering subsystems, tricks).
Big rational numbers: Representing a number as the quotient of
two integers, each represented as an array of groups of digits, is a
classic technique. The fundamental limitation is that the number of
digits grows exponentially with the depth of the computation tree.
Our relevant computation comprises comparing the intersection
of two lines defined by their endpoints against a plane defined by
three vertices. So, this growth in precision is quite tolerable.

v

Figure 1: Difficult test case for
3-D point location.

The challenges in going
from an academic theory
to a workable implementa-
tion are harder. Many C++
implementations of new
data structures automat-
ically construct new ob-
jects on a global heap, and
assume the construction
cost to be negligible. That
is false for parallel pro-
grams processing large datasets. Constructing and destroying heap
objects has a superlinear cost in the number of objects on the heap.
Parallel modifications to the heap must be serialized. Therefore we
carefully construct our code to minimize the number of times that a
rational variable needs to be constructed or enlarged. This includes
minimizing the number of temporary variables needed to evaluate
an expression. Furthermore, we use interval arithmetic as a filter
to determine when evaluation with rationals is necessary.
Simulation of Simplicity: Simulation of Simplicity (SoS), Edels-
brunner et al [10], addresses the problem that, “sometimes, even
careful attempts at capturing all degenerate cases leave hard-to-
detect gaps”, Yap [31]. Figure 1 is a challenging case. It consists of
two pyramids with central vertices incident at a common vertex v .
v is non-manifold and is on 8 faces, 4 from each pyramid. It is not
easy to determine which of the 8 faces should intersect the ray that
would be run up from v in order to locate v . In the subproblem of

point location, RCT gets this point location case wrong; PinMesh
is correct because of SoS, Magalhães et al [24]. SoS symbolically
perturbs coordinates by adding infinitesimals of different orders.
The result is that there are no longer any coincidences, e.g., three
points are never collinear.
Minimal topology: A sufficient representation of a 3-D mesh com-
prises the following: (a) the array of vertices, (vi), where each vi =
(xi ,yi , zi). (b) the array of tetrahedra or other polyhedra, ti , used
solely to store properties such as density, and (c) the array of aug-
mented oriented triangular faces (fi), where fi = (vi1,vi2,vi3, ti1, ti2).
The tetrahedron or polyhedron ti1 is on the positive side of the
face fi = (vi1,vi2,vi3); ti2 on the negative. It is unnecessary to
store any further relations, such as from face to adjacent face, from
vertex to adjacent face, edge loops, or face shells.

Note that there are no pointers or lists; we need only several
structures of arrays. If the tetrahedra have no properties, then the
tetrahedron array does not need to exist, so long as the tetrahedra,
which we are not storing explicitly, are consistently sequentially
numbered. The point is to minimize what types of topology need
to be stored.
Uniform grid: The uniform grid, Akman et al [1], Franklin et al
[13–15] is used as an initial cull so that, when two objects are tested
for possible intersection, then the probability of intersecting is
bounded below by a positive number. Therefore, the number of pairs
of objects tested for intersection that do not actually intersect is
linear in the number that do intersect. Thus the expected execution
time is linear in the output size.

A careful concrete implementation of this abstraction is critical.
We tested several choices; details are in Magalhães [7]. We also
tested an octree, but our uniform grid implementation is much
faster. We also used a second level grid for some cells. This allowed
us to use an approximation to determine which faces intersected
each cell: enclosing oblique faces with a box and then marking all
the cells intersecting that box, which is more cells than necessary.

3 3-D MESH INTERSECTION

3D-EPUG-Overlay exactly intersects 3-D meshes. Its input is
two triangular meshesM0 andM1. Each mesh contains a set of 3-D
triangles representing a set of polyhedra. The output is another
mesh where each represented polyhedron is the intersection of a
polyhedron from M0 with another one from M1. The key is the
combination of five techniques described later. Extra details are in
Magalhães et al [7, 8, 23–25].
Data representation: The input is a pair of triangular meshes
in 3-D (E3). Both meshes must be watertight and free from self-
intersections. The polyhedra may have complex and nonmanifold
topologies, with holes and disjoint components. The two meshes
may be identical, which is an excellent stress test, because of all
the degeneracies.

There are two types of output vertices: input vertices, and inter-
section vertices resulting from intersections between an edge of
one mesh and a triangle of the other. Similarly, there are two types
of output triangles: input triangles and triangles from retesselation.
The first contains only input vertices while the second may contain
vertices generated from intersections created during the retessela-
tion of input triangles. An intersection vertex is represented by an

Exact fast parallel intersection of large 3-D triangular meshes (ext. abs.) Fall Workshop in Computational Geometry, Nov 2018, NYC

edge and the intersecting triangle. For speed, its coordinates are
cached when first computed.

Retesselation of faces that were split was implemented with ori-
entation predicates, Magalhães [7], which reduced to implementing
164 functions. A Wolfram Mathematica script was developed to
create the code for all the predicates.

4 EXPERIMENTS
We conducted extensive experiments tomeasure 3D-EPUG-Overlay’s
performance on large datasets, to compare it to other implementa-
tions, to validate its output, and to try to make it fail on degenerate
cases.

3D-EPUG-Overlaywas implemented in C++ and compiled using
g++ 5.4.1. For better parallel scalability, the gperftools Tcmalloc
memory allocator [16], was employed. Parallel programming was
provided by OpenMP 4.0, multiple precision rational numbers were
provided by GNU GMPXX and arithmetic filters were implemented
using the Interval_nt number type provided by CGAL for interval
arithmetic. The experiments were performed on a workstation with
128 GiB of RAM and dual Intel Xeon E5-2687 processors, each with
8 physical cores and 16 hyper-threads, running Ubuntu Linux 16.04.
We evaluated 3D-EPUG-Overlay, by comparing it against three
state-of-the-art algorithms:
1. LibiGL [33], which is exact and parallel,
2. Nef Polyhedra [4], which is exact, and
3. QuickCSG [9], which is fast and parallel, but not exact, and does

not handle special cases.
Our experiments showed that 3D-EPUG-Overlay is fast, parallel,

exact, economical of memory, and handles special cases.
Experimentswere performedwith a variety of non self-intersecting

andwatertight meshes. The datasets and lengthy results are detailed
in the full paper.

We compared 3D-EPUG-Overlay against other three algorithms.
3D-EPUG-Overlay was up to 101 times faster than LibiGL. The
only test cases where the times spent by LibiGL were similar to the
times spent by 3D-EPUG-Overlay were during the computation
of the intersections of a mesh with itself (even in these test cases
3D-EPUG-Overlay was still faster than LibiGL). In this situation,
the intersecting triangles from the two meshes are never in general
position, and thus the computation has to frequently trigger the
SoS version of the predicates, which we haven’t not optimized yet.
In the future, we intend to optimize this.

However, LibiGL also repairs meshes (by resolving self-inter-
sections) during the intersection computation, which 3D-EPUG-
Overlay does not attempt.

Because of the overhead of Nef Polyhedra and since it is a sequen-
tial algorithm, CGAL was always the slowest. When computing
the intersections, 3D-EPUG-Overlay was up to 1, 284 times faster
than CGAL. The difference is much higher if the time CGAL spends
converting the triangular mesh to Nef Polyhedra is taken into con-
sideration: intersecting meshes with 3D-EPUG-Overlay was up to
4, 241 times faster than using CGAL to convert and intersect the
meshes.

While 3D-EPUG-Overlay was faster than QuickCSG in most
of the test cases (mainly the largest ones), in others QuickCSG
was up to 20% faster than 3D-EPUG-Overlay. The relatively small

performance difference between 3D-EPUG-Overlay and an inexact
method (that was specifically designed to be very fast) indicates
that 3D-EPUG-Overlay presents good performance allied with
exact results. Besides reporting errors during some experiments
QuickCSG also failed in some situations where errors were not
reported.

Finally, we also performed experiments with tetra-meshes. Each
tetrahedron in these meshes is considered to be a different object
and, thus, the output of 3D-EPUG-Overlay is a mesh where each
object represents the intersection of two tetrahedra (from the two in-
put meshes). These meshes are particularly hard to process because
of their internal structure, which generates many triangle-triangle
intersections. For example, during the intersection of the Neptune
with the Neptune translated datasets (two meshes without internal
structure), there are 78 thousand pairs of intersecting triangles and
the resulting mesh contains 3 million triangles. On the other hand,
in the intersection of 518092_tetra (a mesh with 6 million triangles
and 3 million tetrahedra) with 461112_tetra (a mesh with 8 mil-
lion triangles and 4 million tetrahedra) there are 5 million pairs of
intersecting triangles and the output contains 23 million triangles.

To the best of our knowledge, LibiGL, CGAL and QuickCSGwere
not designed to handle meshes with multi-material and, thus, we
couldn’t compare the running time of 3D-EPUG-Overlay against
them in these test cases.

We also evaluated the peak memory usage of each algorithm.
3D-EPUG-Overlay was: almost always smaller than LibiGL, with
the difference increasing as the datasets became larger; smaller
than QuickCSG in every case where QuickCSG returned the cor-
rect answer; and much smaller than CGAL. A typical result was
the intersection of Neptune (4M triangles) with Ramesses (1.7M
triangles): 3D-EPUG-Overlay used 2.6GB, LibiGL used 6.7GB, and
CGAL 84GB. The largest example that 3D-EPUG-Overlay pro-
cessed, 518092Tetra (6M triangles) with 461112Tetra (8.5M triangles)
used 43GB. Magalhães [7] contains detailed results.
Correctness evaluation: 3D-EPUG-Overlay was developed on
a solid foundation (i.e., all computation is exact and special cases
are properly handled using Simulation of Simplicity) in order to
ensure correctness. However, perhaps its implementation has er-
rors? Therefore, we performed extensive experiments comparing it
against LibiGL (as a reference solution). We employed the Metro
tool, Cignoni et al [5], to compute the Hausdorff distances between
the meshes being compared. Metro is widely employed, for exam-
ple, to evaluate mesh simplification algorithms by comparing their
results with the original meshes.

In every test, the difference between 3D-EPUG-Overlay and
LibiGL was reported as 0. In some situations the difference between
LibiGL and CGAL was a small number (maximum 0.0007% of the
diagonal of the bounding-box). We guess this is because the exact
results are stored using floating-point variables, and different strate-
gies are used to round the vertices to floats and write them to the
text file. QuickCSG, on the other hand, generated errors much larger
than CGAL: in the worst case, the difference between QuickCSG
output and LibiGL was 0.13% of the diagonal of the bounding-box).
Magalhães [7] contains detailed results.
Visual inspection: We also visually inspected the results using
MeshLab. Even though small changes in the coordinates of the ver-
tices cannot be easily identified by visual inspection (and even the

Fall Workshop in Computational Geometry, Nov 2018, NYC Salles V. G. Magalhães, W. Randolph Franklin, and Marcus V.A. Andrade

program employed for displaying the meshes may have roundoff er-
rors), topological errors (such as triangles with reversed orientation,
self-intersections, etc) often stand out.

Even when QuickCSG did not report a failure, results were fre-
quently inconsistent, with open meshes, spurious triangles or in-
consistent orientations.
Rotation invariance: We also validated 3D-EPUG-Overlay by
verifying that its result does not change when the input meshes are
rotated. In all the experiments Metro reported that the resulting
meshes were equal (i.e., the Hausdorff distance was 0.000000) to the
corresponding ones obtained without rotation. In addition, we in-
tersected several meshes with a rotated version of themselves. This
is a notoriously difficult case for CAD systems because the large
number of intersections and small triangles. In every experiment
the Hausdorff distance between the two outputs was 0.000000. That
is, we can quickly process cases that can crash CAD systems.

5 SUMMARY
3D-EPUG-Overlay is an algorithm and implementation to inter-
sect a pair of 3D triangular meshes. It is simultaneously the fastest,
free from roundoff errors, handles geometric degeneracies, paral-
lelizes well, and is economical of memory. The source code, albeit
research quality, is freely available for nonprofit research and ed-
ucation at https://github.com/sallesviana/MeshIntersection . We
have extensively tested it for errors; we encourage others to test
it. It is a suitable subroutine for larger systems such as 3D GIS or
CAD systems. Computing other kinds of overlays, such as union,
difference, and exclusive-or, would require modifying only the clas-
sification step. We expect that 3D-EPUG-Overlay could easily
process datasets that are orders of magnitude larger, with hundreds
of millions of triangles. Finally, 3D-EPUG-Overlay has not nearly
been fully optimized, and could be made much faster.

REFERENCES
[1] Varol Akman, Wm Randolph Franklin, Mohan Kankanhalli, and Chandrasekhar

Narayanaswami. 1989. Geometric Computing and the Uniform Grid Data Tech-
nique. Computer Aided Design 21, 7 (1989), 410–420.

[2] Alberto Belussi, Sara Migliorini, Mauro Negri, and Giuseppe Pelagatti. 2016. Snap
Rounding with Restore: An Algorithm for Producing Robust Geometric Datasets.
ACM Trans. Spatial Algorithms and Syst. 2, 1, Article 1 (March 2016), 36 pages.
https://doi.org/10.1145/2811256

[3] Gilbert Bernstein and Don Fussell. 2009. Fast, exact, linear booleans. Eurograph-
ics Symp. on Geom. Process. 28, 5 (2009), 1269–1278. https://doi.org/10.1111/j.
1467-8659.2009.01504.x

[4] CGAL. 2018. Computational Geometry Algorithms Library. (2018). Retrieved
2018-09-09 from https://www.cgal.org

[5] P. Cignoni, C. Rocchini, and R. Scopigno. 1998. Metro: Measuring Error on
Simplified Surfaces. Comput. Graph. Forum 17, 2 (June 1998), 167–174. https:
//doi.org/10.1111/1467-8659.00236

[6] Mark de Berg, Dan Halperin, and Mark Overmars. 2007. An intersection-sensitive
algorithm for snap rounding. Computational Geometry 36, 3 (Apr. 2007), 159–165.

[7] Salles Viana Gomes de Magalhães. 2017. Exact and parallel intersection of 3D
triangular meshes. Ph.D. Dissertation. Rensselaer Polytechnic Institute.

[8] Salles V. G. deMagalhães,W. Randolph Franklin, Marcus V. A. Andrade, andWenli
Li. 2015. An efficient algorithm for computing the exact overlay of triangulations.
In 25th Fall Workshop on Computational Geometry. U. Buffalo, New York, USA.
(extended abstract).

[9] Matthijs Douze, Jean-Sébastien Franco, and Bruno Raffin. 2015. QuickCSG: Arbi-
trary and faster boolean combinations of n solids. Ph.D. Dissertation. Inria-Research
Centre, Grenoble–Rhône-Alpes, France.

[10] Herbert Edelsbrunner and Ernst Peter Mücke. 1990. Simulation of simplicity: a
technique to cope with degenerate cases in geometric algorithms. ACM TOG 9, 1
(1990), 66–104.

[11] F.R. Feito, C.J. Ogayar, R.J. Segura, and M.L. Rivero. 2013. Fast and accurate
evaluation of regularized Boolean operations on triangulated solids. Computer-
Aided Design 45, 3 (2013), 705 – 716. https://doi.org/10.1016/j.cad.2012.11.004

[12] Wm Randolph Franklin. 1982. Efficient polyhedron intersection and union. In
Proc. Graphics Interface. Toronto, 73–80.

[13] Wm Randolph Franklin. 1984. Adaptive Grids for geometric operations. Carto-
graphica 21, 2–3 (Summer – Autumn 1984), 161–167. monograph 32–33.

[14] Wm Randolph Franklin, Narayanaswami Chandrasekhar., Mohan Kankanhalli,
Manoj Seshan, and Varol Akman. 1988. Efficiency of uniform grids for inter-
section detection on serial and parallel machines. In New Trends in Computer
Graphics (Proc. Computer Graphics International’88), Nadia Magnenat-Thalmann
and D. Thalmann (Eds.). Springer-Verlag, 288–297.

[15] Wm Randolph Franklin, Chandrasekhar Narayanaswami, Mohan Kankanhalli,
David Sun, Meng-Chu Zhou, and Peter YFWu. 1989. Uniform Grids: A Technique
for Intersection Detection on Serial and Parallel Machines. In Proceedings of
Auto Carto 9: Ninth International Symposium on Computer-Assisted Cartography.
Baltimore, Maryland, 100–109.

[16] Sanjay Ghemawat and Paul Menage. 2015. TCMalloc: Thread-Caching Malloc.
http://goog-perftools.sourceforge.net/doc/tcmalloc.html (retrieved on 13 Nov
2016). (15 Nov 2015).

[17] Peter Hachenberger, Lutz Kettner, and Kurt Mehlhorn. 2007. Boolean operations
on 3D selective Nef complexes: Data structure, algorithms, optimized implemen-
tation and experiments. Comupt. Geom. 38, 1 (Sept. 2007), 64–99.

[18] John Hershberger. 2013. Stable snap rounding. Comput. Geom. 46, 4 (May 2013),
403–416.

[19] John D. Hobby. 1999. Practical segment intersection with finite precision out-
put. Comput. Geom. 13, 4 (1999), 199–214. http://dblp.uni-trier.de/db/journals/
comgeo/comgeo13.html#Hobby99

[20] Alec Jacobson, Daniele Panozzo, et al. 2016. libigl: A Simple C++ Geometry
Processing Library. http://libigl.github.io/libigl/ (Retrieved on 18 Oct 2017).

[21] Lutz Kettner, Kurt Mehlhorn, Sylvain Pion, Stefan Schirra, and Chee Yap. 2008.
Classroom Examples of Robustness Problems in Geometric Computations. Com-
put. Geom. Theory Appl. 40, 1 (May 2008), 61–78. https://doi.org/10.1016/j.comgeo.
2007.06.003

[22] C. Li. 2001. Exact geometric computation: theory and applications,. Ph.D. Disserta-
tion. Department of Computer Science, Courant Institute - New York University.

[23] Salles V. G. Magalhães, Marcus V. A. Andrade, W. Randolph Franklin, and Wenli
Li. 2015. Fast exact parallel map overlay using a two-level uniform grid. In 4th
ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data
(BigSpatial). Bellevue WA USA. https://doi.org/10.1145/2835185.2835188

[24] Salles V. G. Magalhães, Marcus V. A. Andrade, W. Randolph Franklin, and Wenli
Li. 2016. PinMesh – Fast and exact 3D point location queries using a uniform
grid. Computer & Graphics Journal, special issue on Shape Modeling International
2016 58 (Aug. 2016), 1–11. https://doi.org/10.1016/j.cag.2016.05.017 (online 17
May). Awarded a reproducibility stamp, http://www.reproducibilitystamp.com/.

[25] Salles V. G. Magalhães, Marcus V. A. Andrade, W. Randolph Franklin, Wenli Li,
and Maurício Gouvêa Gruppi. 2016. Exact intersection of 3D geometric models.
In Geoinfo 2016, XVII Brazilian Symposium on GeoInformatics. Campos do Jordão,
SP, Brazil.

[26] Donald J. Meagher. 1982. Geometric Modelling Using Octree Encoding. Computer
Graphics and Image Processing 19 (June 1982), 129–147.

[27] Kurt Mehlhorn, Ralf Osbild, and Michael Sagraloff. 2006. Reliable and Efficient
Computational Geometry Via Controlled Perturbation.. In ICALP (1) (2006-07-03)
(Lecture Notes in Computer Science), Michele Bugliesi, Bart Preneel, Vladimiro
Sassone, and Ingo Wegener (Eds.), Vol. 4051. Springer, 299–310. http://dblp.
uni-trier.de/db/conf/icalp/icalp2006-1.html#MehlhornOS06

[28] Gang Mei and John C. Tipper. 2013. Simple and Robust Boolean Operations for
Triangulated Surfaces. CoRR abs/1308.4434 (2013). http://arxiv.org/abs/1308.4434

[29] Sylvain Pion and Andreas Fabri. 2011. A generic lazy evaluation scheme for exact
geometric computations. Sci. Comput. Program. 76, 4 (Apr. 2011), 307 – 323.

[30] Jonathan Richard Shewchuk. 1997. Adaptive Precision Floating-Point Arithmetic
and Fast Robust Geometric Predicates. Discret. & Comput. Geom. 18, 3 (Oct. 1997),
305–363.

[31] Chee Keng Yap. 1988. Symbolic treatment of geometric degeneracies. In System
Modelling and Optimization: Proc. 13th IFIP Conference, Masao Iri and Keiji Yajima
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 348–358. https://doi.org/
10.1007/BFb0042803

[32] Jing Yongbin, Wang Liguan, Bi Lin, and Chen Jianhong. 2009. Boolean Operations
on Polygonal Meshes Using OBB Trees. In ESIAT 2009, Vol. 1. IEEE, 619–622.

[33] Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh
Arrangements for Solid Geometry. ACM Trans. Graph. 35, 4, Article 39 (July
2016), 15 pages.

Soft Subdivision Motion Planning for Complex Planar Robots∗

Bo Zhou† Yi-Jen Chiang‡ Chee Yap§

1 Introduction
Motion planning is widely studied in robotics [7, 8, 3].
Many planners are heuristic, i.e., without a priori guaran-
tees of their performance (see below for what we mean
by guarantees). In this paper, we are interested in non-
heuristic algorithms for the basic planning problem: this
basic problem considers only kinematics and the existence
of paths. The robot R0 is fixed, and the input is a triple
(α, β,Ω) where α, β are the start and goal configurations
of R0, and Ω ⊆ Rd is a polyhedral environment in d = 2
or 3. The algorithm outputs an Ω-avoiding path from α to
β if one exists, and NO-PATH otherwise. See Figure 1 for
some rigid robots, and also Figure 2 for our GUI interface
for path planning.

The basic planning problem ignores issues such as the
optimality of paths, robot dynamics, planning in the time
dimension, non-holonomic constraints, and other consid-
erations of a real scenario. Despite such an idealization,
the solution to this basic planning problem is often useful
as the basis for finding solutions that do take into account
the omitted considerations. E.g., given a kinematic path,
we can plan a smooth trajectory with a homotopic trace.

The algorithms for this basic problem are called “plan-
ners.” In theory, it is possible to design exact planners
because the basic path planning is a semi-algebraic (non-
transcendental) problem. Even when such algorithms are
available, exact planners have relatively high complexity
and are non-adaptive, even in the plane (see [10]). So we
tend to see inexact implementations of exact algorithms,
with unclear guarantees. When fully explicit algorithms
are known, exact implementation of exact planners is pos-
sible using suitable software tools such as the CGAL library
[5].

In current robotics [8, 3], practical algorithms that
come with some guarantees may be classified as either

∗The conference version of this paper has appeared in Proc. Euro-
pean Symposium on Algorithms (ESA ’18), pages 73:1–73:14, August
2018, and is available on-line at http://cse.poly.edu/chiang/
esa18-final.pdf.
†Department of Computer Science and Engineering, New York Uni-

versity, Brooklyn, NY; bz387@nyu.edu.
‡Department of Computer Science and Engineering, New York Uni-

versity, Brooklyn, NY; chiang@nyu.edu.
§Department of Computer Science, New York University, New York,

NY; yap@cs.nyu.edu.

resolution-based or sampling-based. Each offers a com-
pleteness guarantee: roughly speaking, if there exists a
path, then
– resolution completeness says that a path will be found
if the resolution is fine enough;
– sampling completeness says that a path will be found
with high probability if “enough” random samples are
taken.
But notice that if there is no path, these criteria are silent;
indeed, such algorithms would not halt except by artifi-
cial cut-offs. Thus a major effort in the last 20 years of
sampling research has been devoted to the so-called “Nar-
row Passage” problem. It is possible to view this problem
as a manifestation of the Halting Problem for the sam-
pling approaches: how can the algorithm halt when there
is no path? (A possible approach to address this problem
might be to combine sampling with exact computation, as
in [11].)

Motivated by such issues, as well as trying to avoid the
need for exact computation, we in [13, 15] introduced the
following replacement for resolution complete planners: a
resolution-exact planner takes an extra input parameter
ε > 0 in addition to (α, β,Ω), and it always halts and out-
puts either an Ω-avoiding path from α to β or NO-PATH.
The output satisfies this condition: there is a constant
K > 1 depending on the planner, but independent of the
inputs, such that:
– if there is a path of clearance Kε, it must output a path;
– if there is no path of clearance ε/K, it must output
NO-PATH.
Notice that if the optimal clearance lies between Kε and
ε/K, then the algorithm may output either a path or
NO-PATH. So there is output indeterminacy. Note that the
traditional way of using ε is to fix K = 1, killing off in-
determinacy. Unfortunately, this also leads us right back
to exact computation which we had wanted to avoid. We
believe that indeterminacy is a small price to pay in ex-
change for avoiding exact computation [13]. The practical
efficiency of resolution-exact algorithms is demonstrated
by implementations of planar robots with 2, 3 and 4 de-
grees of freedom (DOF) [13, 9, 14], and also 5-DOF spatial
robots [6]. All these robots perform in real-time in non-
trivial environments. In view of the much stronger guar-
antees of performance, resolution-exact algorithms might

Figure 1: Some rigid planar robots ((a)-(b): star-
shaped; (c)-(e): general shaped).

Figure 2: GUI interface for planner for a 3-legged
robot.

reasonably be expected to have a lower efficiency com-
pared to sampling algorithms. Surprisingly, no such trade-
offs were observed: resolution-exact algorithms consis-
tently outperform sampling algorithms. Our 2-link robot
[9, 14] was further generalized to have thickness (a feat
that exact methods cannot easily duplicate), and can satisfy
a non-self-crossing constraint, all without any appreciable
slowdown. Finally, these planners are more general than
the basic problem: they all work for parametrized families
R0(t1, t2 . . .) of robots, where ti’s are robot parameters.
All these suggest the great promise of our approach.

What is new in this paper. In theoretical path planning,
the algorithms often considered simple robots like discs or
line segments. In this paper, we consider robots of com-
plex shape, which are more realistic models for real-world
robots. We call them “complex robots” (where the com-
plexity comes from the robot geometry rather than from
the degrees of freedom). We focus on planar robots that
are rigid and connected. Such a robot can be represented
by a compact connected polygonal set R0 ⊆ R2 whose
boundary is an m-sided polygon, i.e., an m-gon. Infor-
mally, we call R0 a “complex robot” if it is a non-convex
m-gon for “moderately large” values of m, say m ≥ 5. By
this criterion, all the robots in Figure 1 are “complex.” Ac-
cording to [17], no exact algorithms for m > 3 have been
implemented; in this paper, we have robots with m = 18.
To see why complex robots may be challenging, recall
that the free space of such robots may have complexity
O((mn)3 log(mn)) (see [1]) when the robot and environ-
ment have complexity m and n, respectively. Even with
m fixed, this can render the algorithm impractical. For in-
stance, if m = 10, the algorithm may slow down by 3
orders of magnitude. But our subdivision approach does
not have to compute the entire free space before planning
a path; hence the worst-case cubic complexity of the free
space is not necessarily an issue.

More importantly, we show that the complexity of our
new method grows only linearly with m. To achieve this,

we exploit a remarkable property of soft predicates called
“decomposability.” We show how an arbitrary complex
robot can be decomposed (via triangulation that may in-
troduce new vertices) into an ensemble of “nice triangles”
for which soft predicates are easy to implement. As we see
below, there is a significant difference between a single tri-
angle and an ensemble of triangles. In consequence of our
new techniques, we can now routinely construct resolution-
exact planners for any reasonably complex robot provided
by a user. This could lead to a flowering of experimenta-
tion algorithmics in this subfield.

Technically, it is important to note that the previous soft
predicate construction for a triangle robot in [13, 16] re-
quires that the rotation center, i.e., the origin of the (ro-
tational) coordinate system, be chosen to be the circum-
center of the triangle. But for our new soft predicates the
triangles in the triangulation of the complex robot cannot
be treated in the same way. This is because all the trian-
gles of the triangulation must share a common origin, to
serve as the rotation center of the robot. To ensure easy-
to-compute predicates, we introduce the notion of a “nice
triangulation” relative to a chosen origin: all triangles must
be “nice” relative to this origin. These ideas apply for arbi-
trary complex robots, but we also exploit the special case
of star-shaped robots to achieve stronger results.

Figure 2 shows our experimental setup for complex
robots. A demo showing the real-time performance of
our algorithms is found in the video clip available through
this web link: https://cs.nyu.edu/exact/
gallery/complex/complex-robot-demo.mp4.

Remark. Although it is not our immediate concern to
address noisy environments and uncertainties, it is clear
that our work can be leveraged to address these issues.
E.g., users can choose ε > 0 to be correlated with the un-
certainty in the environment and the precision of the robot
sensors. By using weighted Voronoi diagrams [2], we can
achieve practical planners that have obstacle-dependent
clearances (larger clearance for “dangerous” obstacles).

Table 1: Running Our Planner (R: radius of the robot’s circumcircle around its rotation center; P?: path found? (Yes/No);
Time is in s; S-shaped*: thin version).

Exp# Robot Envir. R ε α β P? Time
0 L-shaped gateway 50 2 (18, 98, 340◦) (458,119,270◦) Yes 10.106
1 L-shaped gateway 50 4 (18, 98, 340◦) (458,119,270◦) No 8.431
2 snowflake sparks 56 2 (108, 136, 0◦) (358, 155, 0◦) Yes 17.846
3 snowflake sparks 56 2 (108, 136, 0◦) (358, 155, 180◦) Yes 3.370
4 S-shaped sparks 74 4 (132, 80, 90◦) (333, 205, 90◦) Yes 34.284
5 S-shaped sparks 74 4 (132, 80, 90◦) (333, 205, 60◦) No 57.371
6 3-legged sparks 70 2 (108, 136, 0◦) (368, 155, 0◦) Yes 41.745
7 L-shaped corridor 68 2 (75, 420, 0◦) (370, 420, 0◦) Yes 4.012
8 L-shaped corridor 68 3 (75, 420, 0◦) (370, 420, 0◦) Yes 1.926
9 L-shaped corridor 68 5 (75, 420, 0◦) (370, 420, 0◦) Yes 2.684
10 L-shaped corridor-L 68 5 (75, 420, 0◦) (370, 420, 0◦) No 2.908
11 L-shaped corridor-L 68 3 (75, 420, 0◦) (370, 420, 0◦) Yes 2.255
12 C-shaped corridor-S 80 4 (80, 450, 0◦) (380, 450, 0◦) Yes 26.200
13 S-shaped maze 38 2 (38, 38, 0◦) (474, 474, 90◦) No 90.097
14 S-shaped* maze 38 2 (38, 38, 0◦) (474, 474, 90◦) Yes 79.518

Table 2: Comparing with OMPL (“#”: Exp#; “Time/P?”: our run time (in s)/path found? (Y/N). Each OMPL method:
Average Time (in s)/Standard Deviation/Success Rate, over 10 runs).

Time/P? PRM RRT EST KPIECE
0 10.106/Y 4.18/2.53/1 42.13/38.49/1 76.22/110.44/0.9 300/0/0
2 17.846/Y 9.22/6.82/1 210.41/144.25/0.3 271.75/89.31/0.1 240.00/126.47/0.2
3 3.370/Y 300/0/0 300/0/0 300/0/0 300/0/0
4 34.284/Y 5.93/7.20/1 217.33/134.53/0.3 300/0/0 300/0/0
5 57.371/N 300/0/0 300/0/0 300/0/0 300/0/0
6 41.745/Y 2.72/4.89/1 154.22/141.77/0.5 104.32/78.10/0.7 3.16/4.28/1
8 1.926/Y 0.63/0.55/1 300/0/0 3.02/4.71/1 0.41/0.28/1
11 2.255/Y 1.49/0.84/1 300/0/0 241.24/124.88/0.2 1.58/1.47/1
12 26.200/Y 3.16/4.21/1 300/0/0 172.506/120.38/0.7 93.88/88.03/0.8
13 90.097/N 300/0/0 300/0/0 300/0/0 300/0/0
14 79.518/Y 300/0/0 236.72/106.44/0.3 300/0/0 39.81/91.57/0.9

2 Experimental Results

We have implemented our approaches in C/C++ with
Qt GUI platform. The software and data sets are
freely available from the web site for our open-source
Core Library [4]. All experiments are reproducible as
targets of Makefiles in Core Library. Our experiments
are on a PC with one 3.4GHz Intel Quad Core i7-2600
CPU, 16GB RAM, nVidia GeForce GTX 570 graphics and
Linux Ubuntu 16.04 OS. The results are summarized in
Table 1 and Table 2. Table 1 is concerned only with the be-
havior of our complex robots; Table 2 gives comparisons
with the open-source OMPL library [12]. The robots are
as shown in Figure 1.

We select some interesting experiments to analyze
characteristic behavior of our planner. Please see Table 1
and the video (https://cs.nyu.edu/exact/
gallery/complex/complex-robot-demo.
mp4). In Exp0-1, we show how the parameter ε affects the
result. With a narrow gateway, when we change ε from
2 to 4, the output changes from a path to NO-PATH for
the same configuration. In Exp2-3, we observe how the
snowflake robot rotates and maneuvers to get from the
start to two different goals. For Exp4-5, the difference
is in the angles of the goal configuration; in Exp5 this is

designed to be an isolated configuration and the planner
outputs NO-PATH as desired. Exp6 shows how the robot
squeezes among the obstacles to move its complex shape
through the environment. Exp7-9 use the same L-shaped
robot, α, β configurations and the environment; only ε
varies. The planner can find three totally different paths.
When ε is small (Exp7), the path is very carefully adjusted
to move the robot around the obstacles. When ε is larger
(Exp8), the planner finds an upper path with a higher
clearance. When ε is even larger (Exp9), the planner
chooses a very safe but much longer path at the bottom.
Note that using a larger ε usually makes the search faster,
since we stop splitting boxes smaller than ε, but a longer
path can make the search slower. In Exp10-11, we modify
the environment of Exp7-9 by putting a large obstacle at
the bottom, which forces the robot to find a path at the top.
Exp12 uses an environment similar to those in Exp7-11
but with much smaller scattered obstacles. It is designed
for the C-shaped robot, which can rotate while having
an obstacle in its pocket. Exp13-14 use a challenging
environment where the small scattered obstacles force the
S-shaped robot to rotate around and only the “thin” version
(Exp14, also in Fig. 3 “maze”) can squeeze through.

In Table 2 we compare our planner with several sam-
pling algorithms in OMPL: PRM, RRT, EST, and KPIECE.

Figure 3: Six Environments in our experiments.

These experiments are correlated to those in Table 1 (see
the Exp #). Each OMPL planner is run 10 times with a
time limit 300 seconds (default), where all planner-specific
parameters use the OMPL default values. We see that
for OMPL planners there are often unsuccessful runs and
they have to time out even when there is a path. On the
other hand, our algorithm consistently solves the problems
in a reasonable amount of time, often much faster than
the OMPL planners, in addition to being able to report
NO-PATH.

References
[1] F. Avnaim, J.-D. Boissonnat, and B. Faverjon. A practi-

cal exact motion planning algorithm for polygonal objects
amidst polygonal obstacles. In Geometry and Robotics,
LNCS Vol 391, 1989.

[2] H. Bennett, E. Papadopoulou, and C. Yap. Planar min-
imization diagrams via subdivision with applications to
anisotropic Voronoi diagrams. Eurographics Symposium
on Geometric Processing, 35(5), 2016.

[3] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Bur-
gard, L. E. Kavraki, and S. Thrun. Principles of Robot Mo-
tion: Theory, Algorithms, and Implementations. MIT Press,
2005.

[4] Core Library. https://cs.nyu.edu/exact/
core_pages/downloads.html.

[5] D. Halperin, E. Fogel, and R. Wein. CGAL Arrangements
and Their Applications. Springer-Verlag, 2012.

[6] C.-H. Hsu, Y.-J. Chiang, and C. Yap. Rods and rings:
Soft subdivision planner for Rˆ3 x Sˆ2, 2018. Available at
http://cse.poly.edu/chiang/rod-ring18.
pdf.

[7] J.-C. Latombe. Robot Motion Planning. Kluwer Academic
Publishers, 1991.

[8] S. M. LaValle. Planning Algorithms. Cambridge University
Press, Cambridge, 2006.

[9] Z. Luo, Y.-J. Chiang, J.-M. Lien, and C. Yap. Resolution
exact algorithms for link robots. In Proc. Intl. Workshop on
Algorithmic Foundations of Robotics (WAFR ’14), volume
107 of Springer Tracts in Advanced Robotics (STAR), pages
353–370, 2015.

[10] V. Milenkovic, E. Sacks, and S. Trac. Robust complete path
planning in the plane. In Proc. Workshop on Algorithmic
Foundations of Robotics (WAFR 2012), Springer Tracts in
Advanced Robotics, vol.86, pages 37–52, 2012.

[11] O. Salzman, M. Hemmer, B. Raveh, and D. Halperin. Mo-
tion planning via manifold samples. In Proc. European
Symp. Algorithms (ESA), 2011.

[12] I. Şucan, M. Moll, and L. Kavraki. The Open Motion
Planning Library. IEEE Robotics & Automation Magazine,
19(4):72–82, 2012. http://ompl.kavrakilab.
org.

[13] C. Wang, Y.-J. Chiang, and C. Yap. On Soft Predicates in
Subdivision Motion Planning. Comput. Geometry: The-
ory and Appl. (Special Issue for SoCG’13), 48(8):589–605,
Sept. 2015.

[14] C. Yap, Z. Luo, and C.-H. Hsu. Resolution-exact planner
for thick non-crossing 2-link robots. In Proc. Intl. Work-
shop on Algorithmic Foundations of Robotics (WAFR ’16),
2016.

[15] C. K. Yap. Soft Subdivision Search in Motion Plan-
ning. In A. Aladren et al., editor, Proc. Work-
shop on Robotics Challenge and Vision (RCV 2013),
2013. Robotics Science and Systems Conference
(RSS 2013), Berlin. In arXiv:1402.3213. Full paper:
http://cs.nyu.edu/exact/papers/.

[16] C. K. Yap. Soft Subdivision Search and Motion Planning,
II: Axiomatics. In Frontiers in Algorithmics, volume 9130
of Lecture Notes in Comp.Sci., pages 7–22. Springer, 2015.
Plenary Talk at 9th FAW. Guilin, China. Aug 3-5, 2015.

[17] L. Zhang, Y. J. Kim, and D. Manocha. Efficient cell label-
ing and path non-existence computation using C-obstacle
query. Int’l. J. Robotics Research, 27(11–12):1246–1257,
2008.

Package Delivery with Trucks and Drones: The
Horsefly Problem

Joseph. S. B. Mitchell
Stony Brook University

Gaurish Telang
Stony Brook University

I. INTRODUCTION

With recent advances in drone technology and their
widespread availability, several companies, including Amazon
and UPS, have been exploring the use of drones for delivering
packages, potentially with higher throughput at lower cost.
“UPS has also estimated that cutting off just one mile for
the routes of each of the company’s 66,000 delivery drivers
would amount to $50 million in savings. For this reason, UPS
is testing drone deliveries, using the top of its vans as a mini-
helipad.” [1]. The video in [2] shows this concept in action.

We consider an optimal package delivery problem utilizing a
truck and a drone, specified as follows. Let S = {p1, . . . , pn}
be a given set of n customer sites in R2. A truck full of
packages starts at point s (the depot) and has a delivery drone
on its rooftop. The drone can carry one package at a time to
a customer, then return to the truck for another package. The
truck moves at maximum speed 1, while the drone flies at
speed ϕ ≥ 1; we refer to ϕ as the speed ratio. The goal is
to compute a route for the truck and for the drone in order to
complete the delivery of all n packages (and have the drone
return back to the empty truck) as soon as possible – i.e.,
we seek to minimize makespan of the delivery process. We
describe algorithms to address this optimal delivery problem.
We give both provable approximation results (an O(log n)-
approximation algorithm) and some experimental results com-
paring some heuristics.

The above problem has been called the Horsefly prob-
lem [3]. It is easy to see that the Horsefly problem is NP-hard,
from the Euclidean TSP. (If the speed ratio ϕ = 1, then an
optimal solution is for the drone and truck to travel together
from site to site on a TSP path.) Fig. 1 shows an example of
a routing for a truck and drone for 30 sites, with ϕ = 5.

The challenge in computing a solution to the Horsefly
problem is to determine both the order of the sites in which
they must be serviced by the drone and the rendezvous points
of the truck and the drone (the points where the drone lands
back on the truck to pick up the next package, and then depart
to the next customer).

It is also assumed in the above model that the truck itself
cannot make any deliveries: it is always the drone that must
deliver a package to every site. (The variant in which the
truck/driver also makes deliveries is also of interest but we
defer that discussion to a full paper.) We also focus here
on the case of the truck being able to move freely within

Fig. 1: Delivery with truck and drone, with speed-ratio
ϕ = 5. The truck and drone travel along the red and green
paths, respectively. The large red dot indicates the initial

position s of the truck and drone.

the Euclidean plane; more realistically, the truck may be
restricted to move on a network of roads, or in an obstacle-
cluttered environment – some of the methods discussed here
can apply more generally and will be discussed in a full paper
(forthcoming).

II. AN O(log n)-APPROXIMATION ALGORITHM

The Horsefly problem in the plane has an O(log n)-
approximation algorithm. We briefly sketch the proof. The
algorithm is based on computing, via dynamic programming,
a least expensive solution of a particular structure: The truck
traverses the edges of an orthogonal binary space partition
(BSP), while the drone’s routes are doubled line segments
connecting each customer site pi to the closest point on the
boundary of the BSP face that contains it. The expense of a
solution is a weighted sum of the edge lengths: ϕ times the
total edge length of the BSP network (the truck network), plus
1 times the doubled segment lengths for the drone paths. We

argue that an optimal solution to the Horsefly problem can be
converted to a BSP-structured solution at a cost of a factor
O(log n) in the makespan. From the optimal BSP-structured
network, we can extract optimal routes for the drone and truck,
and a feasible delivery schedule, which must be within factor
O(log n) of optimal.

III. CASE: DELIVERY ORDER IS GIVEN

We consider first the case in which the order in which
customer sites receive deliveries is given: (p1, p2, . . . , pn).

We make some simple observations about the structure of
an optimal solution:

(1) The truck route and the drone route are polygonal,
with vertices at a set of departure/rendezvous points,
s1 = s, s2, s3, . . . , sn, where point si is a point along
the truck route where the drone departs to deliver the
package to customer pi. (And, thus, si is also the
point on the truck route where the drone returns to
the truck after making the delivery to the customer
at point pi−1, for i ≥ 2.)

(2) The truck and the drone move always at their maxi-
mum speeds (1 and ϕ, respectively).

Given the ordering of the sites, the problem of computing
the optimal rendezvous points si can be formulated as a
convex program, which can be solved by standard non-linear
optimization solvers, such as the Sequential Least Squares
Programming (SLSQP) solver from [7], which we use in
our experiments. In order to speed up this computation, we
formulate the problem of computing optimal tours in the L1

(Manhattan) metric, which becomes a linear program.

Fig. 2 and Fig. 3 show an example using SLSQP versus
LP, based on the site-ordering given by a greedy heuristic
(described below), in both cases. The SLSQP-based method
took about 2 minutes to compute the tour, whereas the LP-
based method computed the tour in less than a second. (Both
times include the time taken for computing the site ordering
by the greedy heuristic.)

To test the approximation properties of the linear program-
ming formulation, we consider the ratio of the lengths of the
tours obtained using LP versus the exact SLSQP solver, for
different speed ratios on 100 uniformly distributed sites in the
unit square [0, 1] × [0, 1]. We perform the experiment on 40
random instances. The initial position of the horse and drone in
all experiments was set to the middle of the square (0.5, 0.5).
We used the MOSEK [8] optimization package for solving the
resulting linear programs.

The ratios of the tour lengths for each run and speed-
ratio are plotted in the figure below, for various values of n
(horizontal axis).

From the figure it appears that the ratio of the tour-lengths
is bounded, for a fixed speed ratio ϕ. Further the worst-case
ratio seems to increase slowly as a function of ϕ.

Number of sites: 100
Drone Speed: 8.0

1
23

4

5

6
7

8

9

10
11

12
13

14

15

16

17

1819

20

21

22

23
24

25

26
27

28

29

30

31

32

33

34

3536

37

38

39

40

4142

43

44

45

46

47

48

49

50

5152

53

54

55

5657

58

59

60

61

62

63

64
65

66

67

68
69

70
71

72
73

74 75

76
77

78

79

80

81

82

83

84
85

86

87

88
8990
91

92

93

94
95

96

97

98

99 100

Algorithm Used: g
Tour Length: 3.06500

Fig. 2: Tour using SLSQP on site ordering returned by the
Greedy heuristic: Tour length is 3.06500

Number of sites: 100
Drone Speed: 8.0

1
23

4

5

6
7

8

9

10
11

12
13

14

15

16

17

1819

20

21

22

23
24

25

26
27

28

29

30

31

32

33

34

3536

37

38

39

40

4142

43

44

45

46

47

48

49

50

5152

53

54

55

5657

58

59

60

61

62

63

64
65

66

67

68
69

70
71

72
73

74 75

76
77

78

79

80

81

82

83

84
85

86

87

88
8990
91

92

93

94
95

96

97

98

99 100

1
23

4

5

6
7

8

9

10
11

12
13

14

15

16

17

1819

20

21

22

23
24

25

26
27

28

29

30

31

32

33

34

3536

37

38

39

40

4142

43

44

45

46

47

48

49

50

5152

53

54

55

5657

58

59

60

61

62

63

64
65

66

67

68
69

70
71

72
73

74 75

76
77

78

79

80

81

82

83

84
85

86

87

88
8990
91

92

93

94
95

96

97

98

99 100

Algorithm Used: gl
Tour Length: 4.21343

Fig. 3: Tour using LP on site ordering returned by the
Greedy heuristic: Tour length is 4.21343

IV. TWO HEURISTICS

A. A Greedy Heuristic

We first introduce a special case of the Horsefly problem,
which we call Collinear-Horsefly. Here, the objective function
is again to minimize the tour-length of the drone, with the
additional restriction that the truck must always be moving in a
straight line towards the site on the line-segment joining itself
and the site, while the drone is also restricted to travelling
along the same line segment. See Fig. 4 for an example
instance of this problem, for ϕ = 3. With this additional

Fig. 4: The Collinear-Horsefly problem.

restriction, the possible rendezvous points for the truck and the
drone becomes finite. We show that an optimal (unrestricted)
Horsefly solution can be converted to a collinear-Horsefly
solution, at a constant factor increase in the makespan.

Similar to the nearest-neighbor insertion heuristic for the
standard TSP, a natural greedy strategy can be formulated
for the Collinear-Horsefly problem; the truck always moves
towards an unvisited site nearest to its current position, while
the drone takes off from the truck, services the site, and flies
back towards the truck along the line joining the truck and the
site again; refer to Fig. 4.

Once the ordering of the sites is determined by the heuristic,
we use the fixed-ordering optimization program (using a
convex program in the L2 case, or a linear program in the
L1 case) to compute the best route for the truck (and thus for

the drone), using the given ordering.

B. A Clustering-Based Heuristic

Fig. 5: The first two steps in the k2means heuristic for the
Horsefly problem.

We describe another heuristic, which we call the “k2means”
heuristic: Given the set S of n sites, we first compute the 2-
centers along with associated cluster points for each of the
2-centers. We then use the exact algorithm to decide which
center (and hence cluster) to visit first.

In Fig. 5, for instance, we decide that the truck and drone
will coordinate to visit all of the sites in the left cluster first and
then the right. Within the chosen cluster, we again compute
the 2-center and then use the exact algorithm for 2 points
to decide which sub-cluster should the truck and drone visit
first. For instance, in the example above, the heuristic decides
to visit all of the sites associated with sites of the 2-center A
and then of the 2-center B.

We continue recursively, for each cluster, until we reach a
cluster size of 1 or 2.

In the above figure, once we finish visiting all of the sites
in the left cluster, we use the ending point of this subtour as
the initial point of the truck and drone to decide the order in
which we must visit the sites in the right cluster.

Once we finish calculating the order of the sites according
to the heuristic, we discard the computed path, and use the
non-linear solver to compute the optimal truck (and drone)
path for this ordering.

C. An Example

The figure below compares two heuristics on one example
of 100 sites distributed inside the unit-square, with ϕ = 8.

D. Comparing tour-lengths for the two heuristics

Here we notice that the greedy heuristic consistently out-
performs the k2means heuristic by a slowly growing function
of n. The same behaviour was observed for other speed-ratios.

Acknowledgements: This work is part of a collaboration
with Sujoy Bhore, John Gunnar Carlsson, Sándor Fekete,
Supantha Pandit, and others from the CG Group at Stony
Brook. We acknowledge support from DARPA, the National

Number of sites: 100
Drone Speed: 8.0

12 3

45

6 7

8910

11

12

13

1415
16
17 18

19

20

21

22 23

24

25

26

27

28293031
3233

34
3536 37

38

39

40

4142
4344

45
46

47
48

49
50

5152

5354
55

56

5758

59

60

616263
6465

66
6768

69
70

71

72

73
7475

76

77
7879

80

8182 83
84
85 86

87
888990

919293949596979899100

Algorithm Used: g
Tour Length: 2.27952

(a) Tour obtained with the greedy heuristic.

Number of sites: 100
Drone Speed: 8.0

12 3

45

6 7

8910

11

12

13

1415
16
17 18

19

20

21

22 23

24

25

26

27

28293031
3233

34
3536 37

38

39

40

4142
4344

45
46

47
48

49
50

5152

5354
55

56

5758

59

60

616263
6465

66
6768

69
70

71

72

73
7475

76

77
7879

80

8182 83
84
85 86

87
888990

919293949596979899100

123
4
5
67

8
9

10

11
121314

15

161718
1920

21
22
23

2425
2627

28
2930

31 3233

34
3536

37

38

39

40

41

42
4344

4546

47 4849
50

51525354555657585960

61

6263
64656667

6869
70

71

72

73

74
7576

77

7879

80

81

82

83

84

858687

8889

9091

92

93
94

95

9697

9899100

Algorithm Used: k
Tour Length: 3.06633

(b) Tour obtained with the k2means heuristic.

Science Foundation (CCF-1526406), and the US-Israel Bina-
tional Science Foundation (project 2016116).

REFERENCES

[1] https://www.businessinsider.com/amazon-and-ups-are-betting-big-on-
drone-delivery-2018-3

[2] UPS tests residential drone delivery. https://youtu.be/P5hQHBNpd7s
[3] John Gunnar Carlsson, Siyuan Song Coordinated Logistics

with a Truck and a Drone Management Science, 2017,
https://doi.org/10.1287/mnsc.2017.2824

[4] Ha, Q. M. and Deville, Y. and Pham, Q. D. and Hà, M. H. On
the Min-cost Traveling Salesman Problem with Drone, arXiv preprint
arXiv:1512.01503, 2015

[5] Campbell, James F and Sweeney, DC and II, Zhang J, Strategic design
for delivery with trucks and drones Technial Report, 2017

[6] Chao, I.M. A tabu search method for the truck and trailer routing problem
Computers & Operations Research, Elsevier 2002 volume 29, number 1,
pages 33-51

[7] https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html
[8] https://www.mosek.com/
[9] http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

Topological Distance Between Nonplanar Transportation Networks

Ahmed Abdelkader1, Geoff Boeing2, Brittany Terese Fasy3, David L. Millman3

1 University of Maryland, College Park
2 Northeastern University

3 Montana State University

For presentation at the Fall Workshop on Computational Geometry (FWCG 2018)

1 Introduction

In recent years, street network analysis has re-
ceived substantial attention in scholarly and pro-
fessional urban planning and transportation engi-
neering [7]. Street networks are typically modeled
as a graph with intersections as nodes connected
to one another by street segments as edges. This
graph model enables the computation of vari-
ous metric, connectivity, and topological mea-
sures by efficient algorithms, including accessi-
bility [36, 40], connectivity [21, 25, 28], central-
ity [15, 30, 39] eccentricity [34], betweenness [3],
clustering [27], block lengths [4, 9], and average
circuity [6, 8, 20,23].

One drawback of most existing research in
street network analysis is the common assumption
of planarity [11] or approximate planarity [15] of
the network. In a planar model, the street net-
work is represented in two dimensions such that
grade-separated edge crossings such as bridges
and tunnels create artificial nodes in the graph.
While planar simplifications can be useful for com-
putational tractability, they misrepresent many
real-world urban street networks. The failure of
this assumption can lead to substantial errors in
analytical results [10].

For the present study, we focus in particular
on map comparison, which can serve the field of
urban morphology [5,26,38] and the evaluation
of map reconstruction algorithms [2]. A recent
line of work showed the advantage of topology-
based measures for map comparison [1]. Using
the common representation of streets by their cen-
terlines [11,14,18,25,29,30,33], streets are split
into a sequence of line segments or street segments
in 2D. Leveraging insights from the nascent field

of topological data analysis, the shape of the
network can be described by tracing how the con-
nectivity of street segments evolves as segments
are gradually thickened [16]. These methods of
topological map comparison can be applied in
transportation engineering and urban planning
research/practice to quantify the difference be-
tween two graphs—accounting for non-planarity—
to measure street network evolution over time, to
compare the structural and functional differences
among proposed urban design alternatives, or to
match trip trajectories to pre-existing infrastruc-
ture models.

In this abstract, we extend and enhance the
topology-based measure presented in [1] to ac-
commodate grade-separated nonplanar street net-
works. Our work is similar in spirit to the study of
multi-layered environments [35] in motion plan-
ning. With the aim of extending known algo-
rithms and data structures for 2D spaces to ac-
commodate surfaces embedded in 3D, the surface
is partitioned into layers. Each layer is required
to project onto the ground plane without self-
intersection. The connections between layers can
be thought of as staircases and ramps. Ignoring
heights, paths across layers are measured by the
projected distance in R2 [32]. Similar ideas have
been explored in architecture and urban planning
to model circulation paths through multi-story
buildings [31,37].

2 Preliminaries

Topological data analysis is fueled by the concept
of persistent homology, which exposes the shape
of data by tracing the evolution of topological
features [17]. By varying the scale, a sequence of

1

nested complexes derived from the data yields a
filtration. Computing the persistent homology on
the filtration reveals all the topological features
in the data, where each feature is described by
its dimension, and the scales at which it appears
and disappears [41]. This is often encoded as a
barcode, which consists of an interval representing
the lifespan of each feature from its birth time
to its death time [19]. In that way, persistent
homology enables us to compare two data sets
by comparing their respective barcodes. One
way to carry out this comparison is to find the
minimum-cost matching between the intervals
in each barcode as used to define the bottleneck
distance. The validity of this distance measure
stems from its stability against small changes in
the data [12]. For further information, the reader
is referred to [16,22].

Our work is an enhancement and extension of
the topology-based distance for street networks
proposed in [1]. Under the assumption of pla-
narity, a point is fixed in the plane and the goal
is to define a topological signature of the local
neighborhood of this point. To define the neigh-
borhood, a window is placed with the point at
its center and the street networks are restricted
within this window by clipping any segments that
extend beyond. A filtration is defined by tracing
the topology of the thickened clipped graph, rela-
tive to the boundary of the clipping region. The
persistence diagram summarizing this filtration
is the local persistent homology (LPH) diagram.
Given two street networks, the signatures can be
compared by computing their bottleneck distance.
This distance can be integrated by varying the
scale and center point used to define the window
to obtain a pseudo-metric; see [1] for the details.

3 Defining and Computing Lay-
ered LPH Distance

In this abstract, we propose a new distance be-
tween street networks which relaxes the planarity
assumption. We also describe the computation

of this distance by explaining how to compute
the Layered Čech Filtration. If all street seg-
ments lie in the same layer, the desired distance
can be found by examining the segment Voronoi
diagram [24], and using the proposed distance
for planar LPH distance in [1]. In what follows,
we define the (local) Layered Čech Filtration by
‘thickening’ the graph G while allowing travel
through portals. Similar to the one-layer case,
our zero-simplices of the Layered Čech Filtration
correspond to straight-line embedded edges and
appear at radius zero, our one-simplices appear
at the radius when two thickened edges overlap.
We note that the edges may thicken through a
portal, which is where the interesting part of the
algorithm lies. Finally, the two-simplices corre-
spond to a three-way intersection of thickened
edges (again, possibly thickening through por-
tals). Since our domain is a street network, the
most interesting topology lies in the connected
components and looping behavior, so we do not
compute higher-dimensional simplices.

Assumptions and Notation Let G = (V,E)
be our piecewise-linear graph immersed in R2. In
what follows, we assume that an oracle ` : E → N
assigns an edge e ∈ E to layer `(e). We may
further assume that `(e) ≤ m for all edges e ∈ E,
for some m ∈ N. We denote a layer Li := `−1(i).
Whenever `(e) = i, with e = (u, v), we say say
that the vertices u, v are also in Li. We define
a portal as a vertex shared between at least two
layers, and assume any layer has at most k portals,
for some k ∈ N. Notice that while edges map
to a single layer, a portal may map to multiple
layers (which happens when adjacent edges map
to different layers).

3.1 The Layered Čech Filtration

Since we assume that the graph has at most m
layers, we think of this graph as m graphs, each
of which resides in its own copy of R2, with por-
tals defining identifications between the layers.
We denote this embedding space (m copies of R2

2

L
ay

er
2

L
ay

er
1

L
ay

er
0

t = 0 t = 40 t = 82 t = 136

Figure 1: Offset of a segment uv across three
layers. Notice that the thickening in the third
layer starts when the portal c is reached in the
second layer.

with an equivalence relation induced from portals)
by L. For ε > 0, we define the thickened graph Gε

to be the tubular neighborhood around G of ra-
dius ε. We can also think of this as the union of
thickened edges. A thickened edge looks like a
tubular neighborhood in one layer and a union
of disks centered at portals in other layers. The
disks need not have the same radius.

One way to approximate the union of thickened
sets is through computing the nerve. In our set-
ting, we call this nerve filtration the Layered Čech
Filtration. Specifically, the zero-simplices corre-
spond to the set of edges in the input graph G, the
one-simplices correspond to pairwise intersections
between edges (and appears at half the distance
needed for that intersection to be nontrivial), and
the two-simplices correspond to the three-way
intersections between thickened edges. When in-
tersections between sets are collapsible, the nerve
lemma states that the nerve of the set is homo-
topic to the union of sets. In our setting, however,
the portals allow for nontrivial intersections be-
tween thickened edges (in fact, a thickened edge
might not be contractible). Nonetheless, we use
the nerve, as the local connectivity information
is important to capture.

3.2 Computation

To compute the Layered Čech Filtration, we must
be able to determine values for the thickening ra-
dius such that pairs and triples of thickened edges
begin to intersect. Since the thickening radius
between two edges is half the distance between
the edges, first, we describe how to compute dis-
tances between edges in L. Then, we consider
three-way intersections of thickened edges in L.

Given two edges e1, e2 ∈ E, as the triangle
inequality still holds between layers, if e1 and e2
are on the same layer L, there exists a short-
est path between e1 and e2 that remains within
layer L. If, however, the edges are in different
layers, the shortest path passes through multiple
layers, perhaps even some layers that do not con-
tain either e1 or e2. To compute the length of the
path, we introduce an auxiliary data structure
called the Portal Graph.

The Portal Graph The only way to move be-
tween layers is through portals. To help with
subsequent distance computations, we precom-
pute a complete weighted graph P on the O(km)
portals. We create a graph P̃ with the vertex
set corresponding to the portals, and the initial
weight of the edge between two portals p and q is:

w0(p, q) =

0, if p = q,

d2(p, q), if ∃i s.t. p, q ∈ Li,
∞, otherwise.

Using this initial weight assignment, we run
an all-pairs shortest paths algorithm on this
weighted graph to obtain the shortest-path dis-
tance dP : P×P → R between all pairs of portals.
The portal graph P is the graph where the edge-
weights are the lengths of the shortest paths in P̃ .
Precomputation costs O(k3m3) by standard al-
gorithms [13].

Pairwise Distances (Two-way Intersec-
tions) Next, we describe how to compute dis-
tances between edges in L. Let edges ei ∈ Li

3

and ej ∈ Lj . If i = j, the distance between ei
and ej in L is the Euclidean distance between ei
and ej . If i 6= j, we compute the distance be-
tween ei and ej in L by augmenting P as follows.
First, let P∗ be the subgraph of P consisting
of portals in Li and Lj and the edges between
the portals in the two layers. Add a vertex u
to P∗ where u represents ei. For each portal
p ∈ Li, add edge (u, p) to P∗ weighted as the
Euclidean distance between ei and p. Similarly,
add a vertex v representing ej and edges to all
portals in Lj . The length of the shortest path
from u to v in P∗ is the distance from ei to ej
in L. Since P∗ has at most 2k + 2 vertices and
at most k2 + 2k edges, the cost of computing a
shorted path between u and v in P∗ is O(k2).
Once we have the distance d between edges ei
and ej in L, the thickening radius where ei and ej
intersect is d/2.

Two-Simplices (Three-way Intersections)
Given a triplet of edges, we are interested in
finding the thickening radius where the edges in-
tersect. We begin with a few observations. First,
observe that a three-way intersection in L may
occur in any layer. Second, observe that for a
thickened edge e ∈ Li, when e thickens enough to
reach a portal pi ∈ Li, edge e continues to thicken
on every layer in which pi connects. In particular,
let pj ∈ Lj be a portal on layer Lj in which pi
connects. As we continue to thicken e, we observe
that a disk centered at pj starts growing.

From the observations, we can enumerate the
four configurations of how thickened objects can
intersect on a layer. In particular the configura-
tionss are: (C1) three thickened edges, (C2) two
thickened edges and a disk, (C3) one thickened
edge and two disks, (C4) three disks.

We can further use the observations to iden-
tify the thickening radius with brute force. In
particular, for each layer Li, we enumerate all
configurations and determine ri the least thicken-
ing radius yielding a non-trivial three-way overlap
over all configurations on Li. Finally, the thick-
ening radius r is min({ri, . . . , rm}).

4 Discussion

In this paper, we extend the results of [1] to the
more realistic setting that allows for bridges and
tunnels to be represented. In particular, we break
the graph into layers. We assume the layering
structure is part of the input and focus on the
problem of computing a topology-based signature
for the purposes of map comparison. Future work
includes improving the algorithm by exploring the
order-k Voronoi diagram of additively-weighted
line segments, extending the definition of the
Layered Čech Filtration to the Local Layered
Čech Filtration, and implementing the algorithm.

Acknowledgements BTF would like to ac-
knowledge the generous support of the National
Science Foundation under grant CCF-1618605.

References

[1] M. Ahmed, B. T. Fasy, and C. Wenk. Local per-
sistent homology based distance between maps.
In Proceedings of the 22nd ACM SIGSPATIAL
International Conference on Advances in Geo-
graphic Information Systems, pages 43–52, 2014.

[2] M. Ahmed, S. Karagiorgou, D. Pfoser, and
C. Wenk. Quality Measures for Map Comparison,
pages 71–83. 2015.

[3] M. Barthélemy. Betweenness centrality in large
complex networks. The European Physical Jour-
nal B, 38(2):163–168, Mar 2004.

[4] M. Barthelemy. From paths to blocks: New
measures for street patterns. Environment and
Planning B: Urban Analytics and City Science,
44(2):256–271, Mar. 2017.

[5] M. Barthelemy, P. Bordin, H. Berestycki, and
M. Gribaudi. Self-organization versus top-down
planning in the evolution of a city. Scientific
Reports, 3, July 2013.

[6] M. Barthlemy. Spatial networks. Physics Reports,
499(1):1 – 101, 2011.

[7] M. Batty. Big data, smart cities and city planning.
Dialogues in Human Geography, 3(3):274–279,
2013.

4

[8] G. Boeing. The Morphology and Circuity of
Walkable and Drivable Street Networks. In
L. D’Acci, editor, Mathematics of Urban Mor-
phology (forthcoming). Birkhuser, Cham, Switzer-
land, 2018.

[9] G. Boeing. A Multi-Scale Analysis of 27,000
Urban Street Networks: Every US City, Town,
Urbanized Area, and Zillow Neighborhood. En-
vironment and Planning B: Urban Analytics and
City Science, online first, 2018.

[10] G. Boeing. Planarity and street network represen-
tation in urban form analysis. Environment and
Planning B: Urban Analytics and City Science,
in press, 2018.

[11] A. Cardillo, S. Scellato, V. Latora, and S. Porta.
Structural properties of planar graphs of urban
street patterns. Phys. Rev. E, 73, Jun 2006.

[12] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer.
Stability of persistence diagrams. Discrete &
Computational Geometry, 37(1):103–120, Jan
2007.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. The MIT
Press, 3rd edition, 2009.

[14] P. Crucitti, V. Latora, and S. Porta. Central-
ity in networks of urban streets. Chaos: An
Interdisciplinary Journal of Nonlinear Science,
16(1):015113, 2006.

[15] P. Crucitti, V. Latora, and S. Porta. Centrality
measures in spatial networks of urban streets.
Phys. Rev. E, 73, Mar 2006.

[16] H. Edelsbrunner and J. Harer. Computational
topology: an introduction. American Mathemati-
cal Soc., 2010.

[17] H. Edelsbrunner, D. Letscher, and A. Zomoro-
dian. Topological persistence and simplification.
In Proceedings 41st Annual Symposium on Foun-
dations of Computer Science, pages 454–463, Nov
2000.

[18] B. Frizzelle, K. Evenson, D. Rodriguez, and
B. Laraia. The importance of accurate road data
for spatial applications in public health: cus-
tomizing a road network. International Journal
of Health Geographics, 8(24), 2009.

[19] R. Ghrist. Barcodes: the persistent topology of
data. Bulletin of the American Mathematical
Society, 45(1):61–75, 2008.

[20] D. J. Giacomin and D. M. Levinson. Road
network circuity in metropolitan areas. Envi-
ronment and Planning B: Planning and Design,
42(6):1040–1053, 2015.

[21] A. Hajrasouliha and L. Yin. The impact of street
network connectivity on pedestrian volume. Ur-
ban Studies, 52(13):2483–2497, Oct. 2015.

[22] A. Hatcher. Algebraic topology. 2005.

[23] J. Huang and D. M. Levinson. Circuity in urban
transit networks. Journal of Transport Geography,
48:145–153, Oct. 2015.

[24] M. Karavelas. A robust and efficient implemen-
tation for the segment Voronoi diagram. In Proc.
1 st Int. Symp. on Voronoi Diagrams in Science
and Engineering, pages 51–62, 2004.

[25] P. L. Knight and W. E. Marshall. The metrics of
street network connectivity: their inconsistencies.
Journal of Urbanism: International Research on
Placemaking and Urban Sustainability, 8(3):241–
259, July 2015.

[26] A. P. Masucci, K. Stanilov, and M. Batty. Lim-
ited urban growth: London’s street network dy-
namics since the 18th century. PLOS ONE,
8(8):1–10, 08 2013.

[27] T. Opsahl and P. Panzarasa. Clustering in
weighted networks. Social Networks, 31(2):155 –
163, 2009.

[28] D. O’Sullivan. Spatial Network Analysis, pages
1253–1273. 2014.

[29] S. Porta, P. Crucitti, and V. Latora. The network
analysis of urban streets: A dual approach. Phys-
ica A: Statistical Mechanics and its Applications,
369(2):853 – 866, 2006.

[30] S. Porta, P. Crucitti, and V. Latora. The network
analysis of urban streets: A primal approach. En-
vironment and Planning B: Planning and Design,
33(5):705–725, 2006.

[31] J.-C. Thill, T. H. D. Dao, and Y. Zhou. Trav-
eling in the three-dimensional city: applications
in route planning, accessibility assessment, loca-
tion analysis and beyond. Journal of Transport
Geography, 19(3):405 – 421, 2011.

[32] W. V. Toll, A. F. C. Iv, M. J. V. Kreveld, and
R. Geraerts. The medial axis of a multi-layered
environment and its application as a navigation

5

mesh. ACM Trans. Spatial Algorithms Syst.,
4(1):2:1–2:34, June 2018.

[33] A. Turner. From axial to road-centre lines: A
new representation for space syntax and a new
model of route choice for transport network anal-
ysis. Environment and Planning B: Planning and
Design, 34(3):539–555, 2007.

[34] D. Urban and T. Keitt. Landscape connectiv-
ity: A graph-theoretic perspective. Ecology,
82(5):1205–1218.

[35] W. van Toll, A. F. Cook, and R. Geraerts. Navi-
gation meshes for realistic multi-layered environ-
ments. In 2011 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages
3526–3532, 2011.

[36] P. Waddell, I. Garcia-Dorado, S. M. Maurer,
G. Boeing, M. Gardner, E. Porter, and D. Aliaga.
Architecture for modular microsimulation of
real estate markets and transportation. arXiv
preprint arXiv:1807.01148, 2018.

[37] E. Whiting, J. Battat, and S. Teller. Topology
of urban environments. In Computer-Aided Ar-
chitectural Design Futures (CAADFutures) 2007,
pages 114–128, 2007.

[38] C. Zhong, S. M. Arisona, X. Huang, M. Batty,
and G. Schmitt. Detecting the dynamics of urban
structure through spatial network analysis. In-
ternational Journal of Geographical Information
Science, 28(11):2178–2199, 2014.

[39] C. Zhong, M. Schlpfer, S. M. Arisona, M. Batty,
C. Ratti, and G. Schmitt. Revealing centrality in
the spatial structure of cities from human activity
patterns. Urban Studies, 54(2):437–455, 2017.

[40] D. Zielstra and H. Hochmair. Comparative Study
of Pedestrian Accessibility to Transit Stations
Using Free and Proprietary Network Data. Trans-
portation Research Record: Journal of the Trans-
portation Research Board, 2217:145–152, 2011.

[41] A. Zomorodian and G. Carlsson. Computing
persistent homology. Discrete & Computational
Geometry, 33(2):249–274, Feb 2005.

6

Red-Blue-Partitioned MST, TSP, and Matching

Matthew P. Johnson⇤

Abstract

Arkin et al. [2] recently introduced partitioned pairs net-
work optimization problems: given a metric-weighted
graph on n pairs of nodes, the task is to color one
node from each pair red and the other blue, and then
to compute two separate network structures or disjoint
(node-covering) subgraphs of a specified sort, one on
the graph induced by the red nodes and the other on
the blue nodes. Three structures have been investigated
by [2]—spanning trees, traveling salesperson tours, and
perfect matchings—and the three objectives to optimize
for when computing such pairs of structures: min-sum,
min-max, and bottleneck. We provide improved approxi-
mation guarantees and/or strengthened hardness results
for these nine NP-hard problem settings.

1 Introduction

We consider the class of partitioned pairs network op-
timization problems recently introduced by Arkin et
al. [2]. Given a complete metric-weighed graph G whose
vertex set consists of n pairs {p1, q1}, ..., {pn, qn} (with
n even), the task is to color one node from each pair
red and the other blue, and then to compute two net-
work structures or disjoint (node-covering) subgraphs of
a specified sort, one on the graph induced by the blue
nodes and the other on the red nodes. One motivation
is robustness: if the pairs represent n di↵erent types
of resources needed to build the desired network struc-
ture, with two available instances pi, qi of each type i,
then solving the problem means computing two sepa-
rate independent instances of the desired structure, one
of which can be used as a backup if the other fails.

The structures that have been investigated are span-
ning trees, traveling salesperson, and perfect matchings.
A solution consists of a disjoint pair of subgraphs cov-
ering all nodes, i.e., two (partial) matchings, two trees,
or two cycles, and there are di↵erent potential ways of
evaluating the cost of the pair. The optimization ob-
jectives that have been considered are: 1) minimize the
sum of the two structures’ costs (min-sum), 2) minimize
the maximum of the two structures’ costs (min-max),
and 3) minimize the weight of the heaviest edge used in
either of the structures (bottleneck).

Contributions. We provide a variety of results for

⇤Lehman College and The Graduate Center, CUNY

these nine problem settings (all of which turn out to be
NP-hard; see Table 1), including algorithms with im-
proved approximation guarantees and/or stronger hard-
ness results for each. In particular, we provide tighter
analyses of the approximation factors of Arkin et al. [2]’s
min-sum/min-max 2-MST algorithm, which is equiva-
lent to Algorithm 1 below. We show that the algorithm
provides approximation guarantees of 3 and 4 for 2-MST
with objectives min-sum and min-max, respectively. We
also show that a simple extension of this algorithm (see
Algorithm 2 below) provides a 4-approximation for 2-
TSP for both min-sum and min-max. All four approx-
imation factors are tight. See the full version of the
paper for omitted proofs.

Related work. The primary antecedent of this work
is Arkin et al. [2] (see also references therein), which
introduced the class of 2-partitioned network optimiza-
tion problems. Earlier related problem settings include
optimizing a path visiting at most one node from each
pair [8], generalized MST [15, 17, 3], generalized TSP
[3], constrained forest problems [9], adding conflict con-
straints to MST [18, 12, 6] and to perfect matching
[16, 6], and balanced partition of MSTs [1].

2 2-MST

2.1 Min-sum/min-max 2-MST: algorithm

In this section we give a simple algorithm (see Algorithm
1) that provides an approximation guarantee for 2-MST
under both the min-sum and min-max objectives. The
key lemma the approximation guarantee relies on proves
a property about the result of partitioning a metric-
edge-weighted spanning tree into a 2-component span-
ning forest.

Initially we show that for any 2-coloring Vb [Vr = V
of an arbitrary metric-edge-weighted graph (even with-
out the constraint of specified pairs being colored di↵er-
ently), the sum of the costs of MSTs on Vb and Vr will
be at most three times the cost of an MST on V , and
each of them alone will be at most two times this; both
inequalities are tight.

Lemma 1 Let V be the nodes of a metric-weighted
graph. Let T be an MST on V , and let Vb [Vr = V
be any 2-coloring of V , and let Tb and Tr be MSTs of
Vb and Vr, respectively. Then we have:

(a) c(Tb) + c(Tr) 3c(T), and

Table 1: Summary of results. R, B ✓ E denote the red and blue solutions, respectively. UB values indicate the approximation
factors we obtain, all for general metric spaces; LB values indicate hardness of approximation lower bounds, all (except min-
sum and min-max TSP) for the special case of metric weights {1, 2}. Best prior bounds (all due to [2]) are also shown, where
⇢St 2 denotes the underlying metric space’s Steiner ratio (conjectured to be 2p

3
⇡ 1.1547 in Euc. 2D [11]), and ⇢tsp denotes

TSP’s best achievable approximation factor in the underlying metric space (currently ⇢tsp = 1.5 in general [4]).

min-sum min-max bottleneck
c(R) + c(B) max{c(R), c(B)} max{we : e 2 B [R}

MST

our UB: 3 4 �
[2]’s UB: (3⇢St) (4⇢St) (9)
our LB: NP-h NP-h 2
[2]’s LB: (-) (NP-h in metric) (-)

TSP

our UB: 4 4 �
[2]’s UB: (3⇢tsp) (6⇢tsp) (18)
our LB: 123/122 ⇡ 1.00819 with metric weights {.5,1,1.5,2} 2
[2]’s LB: (-) (-) (-)

matching

our UB: � � �
[2]’s UB: (2) (3) (3)

our LB: 8305
8304 ⇡ 1.00012 8305

8304 ⇡ 1.00012 2
[2]’s LB: (NP-h in metric) (weakly NP-h in 2D Euc.) (-)

Algorithm 1 Min-sum/min-max 2-MST approx

1: T an MST on the 2n nodes
2: {TL, TR} result of deleting a max-weight edge e⇥

from T
3: for each node pair (pi, qi) 2 VL ⇥ VR do

color pi blue and qi red

4: for each other node pair (pi, qi) do
assign pi, qi arbitrary distinct colors

5: for c 2 {b, r}: Tc a minimum-weight tree span-
ning the color-c nodes

6: return {Tb, Tr}

(b) max{c(Tb), c(Tr)} 2c(T).

Proposition 1 There exist families of graphs showing
that bounds (a) and (b) of Lemma 1 are (simultane-
ously) tight.

Then we refine the proof of this key lemma to improve
the combined cost of the two trees slightly, reducing it
by the weight of three heavy edges.

Finally we analyze Algorithm 1, which forms trees
TL, TR by deleting a max-weight edge e⇥ (of weight w⇥)
from an MST T computed on the 2n nodes, and then
colors all “lone” nodes appearing without their partners
in TL blue and all lone nodes in TR red, and assigns
arbitrary distinct colors to all other node pairs.

Theorem 2 Algorithm 1 provides a 3-approximation
for min-sum 2-MST.

The proof analyzes three cases, depending on whether
one, both, or neither TL, TR contains a pair, the first two

cases of which imply that OPT must cross between TL

and TR at least once or twice, respectively. The chal-
lenge is that c(OPT) is lower-bounded by c(TL)+c(TR)
but not by c(T) = c(TL) + w⇥ + c(TR). We upper-
bound ALG by carefully applying the refinement of
Lemma 1 to ALGb + ALGr, and we obtain a lower
bound on c(OPT) including w⇥ or 2w⇥, permitting the
two bounds to be compared, by subtracting max-weight
edges from one or both sides.

This immediately implies that the same algorithm
provides 6-approximation for min-max 2-MST, but we
perform a tighter analysis.

Theorem 3 Algorithm 1 provides a 4-approximation
for min-max 2-MST.

Extending Proposition 1, we obtain:

Proposition 2 There exist families of instances show-
ing that the 2-MST min-sum and min-max approxima-
tion ratios are both tight.

2.2 Min-sum/min-max/bottleneck: hardness

We provide a reduction inspired by the reduction of [7]
from Three-Dimensional Matching to the problem of
partitioning a bipartite graph into two connected com-
ponents, each containing exactly half the vertices.

In our reduction, however, we reduce the traditional
3-SAT problem.

Given the 3-SAT formula, we construct the following
graph (see Fig. 1). For each clause, create a path of
length p. For each variable xi, we create create two
nodes, xi and x̄i. We also create a path of length pb

called b and a path of length pr called r. From each xi

Pb

Pr

C1 C2 C3 Cm

x1 x2 x3 xn

x̄1 x̄2 x̄3 x̄n

Figure 1: Spanning tree reduction.

or x̄i, we draw an edge to the final nodes of the paths
corresponding the clauses that the literal appears in.
Finally, from each xi and x̄i, we draw edges to the final
nodes paths b and r. All the edges defined have 1; all
non-defined edges have weight 2. (In all cases when we
refer to the “final” node of one of these m+2 paths, we
mean the node with degree > 2.)

The path lengths are defined as follows: pr = (n+1) ·
n3 + n + n + 1, pb = n3 + n + 1, p = n3 + 1.

Then the total number of nodes in the graph con-
structed is: |V | = n · p + pb + pr + m, = 2 · (nr + m).

Finally, we must specify the {pi, qi} pair relationships
of these nodes. Each pair {xi, x̄i} is a {pi, qi} pair. All
pr nodes of path pr are pi s. All pb nodes of path p and
all p nodes of path corresponding to an element are qi

nodes. Observe that results in an equal number of pi

and qi nodes since pb + n · p = pr.

Lemma 4 The formula is satisfiable i↵ the constructed
graph admits a 2-MST solution using only weight-1
edges.

Thus we conclude:

Theorem 5 In the special case of metric graphs with
weights 1 and 2, min-sum and min-max, 2-MST are

Algorithm 2 Min-sum/min-max 2-TSP approx

Identical to Alg, 1, except with lines 5,6 replaced by:
5: C a TSP tour, computed from T by edge-

doubling
6: for c 2 {b, r}: Cc a tour of the color-c nodes,

computed by shortcutting C
7: return {Cb, Cr}

both (strongly) NP-Complete, and bottleneck 2-MST is
NP-hard to approximate with factor better than 2.

3 2-TSP

3.1 Min-sum/min-max/bottleneck 2-TSP: hardness

Clearly the min-sum and min-max objectives for 2-TSP
are at least as hard to approximate as ordinary TSP in
the same metric space (e.g., hard to approximate with
factor better than 123/122 [13], even with edge weights
{.5, 1, 1.5, 2}): to reduce TSP to either of these, simply
introduce a co-located pair {pv, qv} for each node v in
the TSP instance. Similarly, the same reduction implies
that the bottleneck objective for 2-TSP is at least as
hard to approximate as ordinary bottleneck TSP in the
same metric space (e.g., hard to approximate with factor
better than 2, even with edge weights {1, 2}).

3.2 Min-sum/min-max 2-TSP: algorithm

Now we adapt Algorithm 1 above to obtain a 4-
approximation algorithm for min-sum and min-max 2-
TSP (see Algorithm 2).

The proof again analyzes three cases, depending on
whether one, both, or neither TL, TR contains a pair.
Unlike with 2-MST, 2-TSP’s c(OPT) is lower-bounded
by c(T) in the first two cases, and so we can compare it
to the simple upper bound on c(ALG) of 4c(T).

Theorem 6 Algorithm 2 is a 4-approximation algo-
rithm for min-sum 2-TSP.

Theorem 7 Algorithm 2 is a 4-approximation algo-
rithm for min-max 2-TSP.

Proposition 3 There exist families of instances show-
ing that the 2-TSP min-sum and min-max approxima-
tion factors are both tight.

4 2-Matching

4.1 Preliminaries

In the case of perfect matching we require that the num-
ber of pairs n be even. It will be convenient to re-express
the 2-Matching problem as an equivalent problem con-
cerning cycle covers. This is done as follows. First, for

each pair {pi, qi}, draw a length-2 path (of unit-weight
edges) between them, separated by a dummy node di,
and in the resulting 3n-node graph G0 consider instead
the task of finding a 2-factor, i.e., a node-disjoint cycle
cover, of minimum cost. In particular, consider seeking
a cycle cover that uses only unit-weight edges, which
would have cost 3n.

One lemma we prove shows that any 2-factor (with all
cycle lengths multiples of 6) in G0 will induce a matching
in G using only unit-weight edges (proof omitted).

4.2 Bottleneck 2-Matching: hardness

To prove hardness, we give a reduction inspired by Pa-
padimitriou’s reduction [5] from 3-SAT to the problem
of deciding whether a graph can be partitioned into a
node-disjoint collection of cycles, each of size at least 6.
(Details omitted.)

Theorem 8 In the special case of metric graphs with
weights 1 and 2, bottleneck 2-Matching is NP-hard to
approximate with factor better than 2 (and min-sum and
min-max 2-Matching are both (strongly) NP-Complete).

4.3 Min-sum/min-max 2-Matching: hardness

By reduction from a special case of Max 1-in-3 SAT,
we can obtain a hardness of approximation result for
the min-sum and min-max objectives. Let Max 1-in-3
SAT-5 denote Max 1-in-3 SAT under the restriction
that each variable appears in at most 5 clauses.

Lampis has shown (implicitly in [14]1) the following:

Lemma 9 There exists a family of Max 1-in-3 SAT-
5 instances with 15m clauses and 8.4m variables, each
appearing in at most 5 clauses, for which, for any ✏ > 0,
it is NP-hard to decide whether the minimum number of
unsatisfiable clauses is at most ✏m or at least (0.5�✏)m.

For concreteness, let Min Not-1-in-3 SAT-5 indi-
cate the optimization problem of minimizing the num-
ber of unsatisfied clauses in a 1-in-3 SAT-5 formula.

Now we argue that the same construction used above
provides an approximation-preserving reduction from
Min Not-1-in-3 SAT-5.

Corollary 1 Min-sum and min-max 2-Matching are
both, in the special case of metric graphs with weights 1
and 2, NP-hard to approximate with factor better than
8305/8304 ⇡ 1.00012.

Acknowledgements. This work was supported in part by
NSF award INSPIRE-1547205, and by the Sloan Foundation
via a CUNY Junior Faculty Research Award. We thank Ali
Assapour, Ou Liu, and Elahe Vahdani for useful discussions.

1Karpinksi et al. [13] provide a similar construction yielding a
stronger hardness of approximation lower bound for Metric TSP,
but adapting that construction to our present problem actually
leads to a slightly weaker lower bound.

References

[1] M. Andersson, J. Gudmundsson, C. Levcopoulos, and
G. Narasimhan. Balanced partition of minimum spanning
trees. International Journal of Computational Geometry &
Applications, 13(04):303–316, 2003.

[2] E. M. Arkin, A. Banik, P. Carmi, G. Citovsky, S. Jia, M. J.
Katz, T. Mayer, and J. S. B. Mitchell. Network optimization
on partitioned pairs of points. In ISAAC, pages 6:1–6:12,
2017.

[3] B. Bhattacharya, A. Ćustić, A. Rafiey, A. Rafiey, and
V. Sokol. Approximation algorithms for generalized MST
and TSP in grid clusters. In COCOA, pages 110–125. 2015.

[4] N. Christofides. Worst-case analysis of a new heuristic for the
travelling salesman problem. Technical Report 88, Manage-
ment Sciences Research Group, Carnegie-Mellon University,
Pittsburgh, PA, 1976.

[5] G. Cornuejols and W. Pulleyblank. A matching problem
with side conditions. Discrete Mathematics, 29(2):135–159,
1980.

[6] A. Darmann, U. Pferschy, J. Schauer, and G. J. Woeginger.
Paths, trees and matchings under disjunctive constraints.
Discrete Applied Mathematics, 159(16):1726–1735, 2011.

[7] M. E. Dyer and A. M. Frieze. On the complexity of parti-
tioning graphs into connected subgraphs. Discrete Applied
Mathematics, 10(2):139–153, 1985.

[8] H. N. Gabow, S. N. Maheshwari, and L. J. Osterweil. On
two problems in the generation of program test paths. IEEE
Transactions on Software Engineering, (3):227–231, 1976.

[9] M. X. Goemans and D. P. Williamson. A general approx-
imation technique for constrained forest problems. SIAM
Journal on Computing, 24(2):296–317, 1995.

[10] P. Hell and D. G. Kirkpatrick. Packings by cliques and by
finite families of graphs. Discrete Mathematics, 49(1):45–59,
1984.

[11] A. O. Ivanov and A. A. Tuzhilin. The Steiner ratio Gilbert–
Pollak conjecture is still open. Algorithmica, 62(1-2):630–
632, 2012.

[12] M. M. Kanté, C. Laforest, and B. Momege. Trees in graphs
with conflict edges or forbidden transitions. In TAMC, pages
343–354. Springer, 2013.

[13] M. Karpinski, M. Lampis, and R. Schmied. New inapprox-
imability bounds for TSP. Journal of Computer and System
Sciences, 81(8):1665–1677, 2015.

[14] M. Lampis. Improved inapproximability for TSP. In AP-
PROX/RANDOM, pages 243–253. Springer, 2012.

[15] Y.-S. Myung, C.-H. Lee, and D.-W. Tcha. On the generalized
minimum spanning tree problem. Networks, 26(4):231–241,
1995.

[16] T. Öncan, R. Zhang, and A. P. Punnen. The minimum
cost perfect matching problem with conflict pair constraints.
Computers & Operations Research, 40(4):920–930, 2013.

[17] P. C. Pop. New models of the generalized minimum span-
ning tree problem. Journal of Mathematical Modelling and
Algorithms, 3(2):153–166, 2004.

[18] R. Zhang, S. N. Kabadi, and A. P. Punnen. The minimum
spanning tree problem with conflict constraints and its vari-
ations. Discrete Optimization, 8(2):191–205, 2011.

The Strength of Marble-Powered Computing

Matthew P. Johnson⇤

Abstract

Turing Tumble is a toy mechanical computer (generalizing

the classic Digi-Comp II, principally through the addition

of gears), in which marbles roll down a board, along paths

determined by the locations of ramps, toggles and gears,

which are chosen by the “programmer”, and by their current

states, which the marbles a↵ect when visiting them. Aaron-

son proved Digi-Comp II was CC-Complete, i.e., equivalent

to evaluating comparator circuits, and posed the question of

what additional functionality might raise its computational

power beyond CC, speculating that a capability for toggles

to a↵ect one another’s states (which Turing Tumble’s gears

provide) might su�ce. This turns out to be correct: we show

that Turing Tumble is P-Complete.

1 Introduction

Turing Tumble is a toy mechanical (or “marble-
powered”) computer, which was recently recently intro-
duced after raising $400k on Kickstarter.1 It consists of
a two-dimensional square grid pegboard, which stands
at an angle; a collection of pieces including ramps, tog-
gles (or “bits”), gears, crossovers, and interceptors; and
a set of marbles (of two colors). The user “programs”
the board through the placement of the pieces. The
program is run by pressing a button to release a marble
from the top, causing it to roll down the board, passing
through some diagonally contiguous sequence of pieces
(see Fig. 1), perhaps a↵ecting their state, until it reaches
a paddle on the bottom-left or -right, where it causes
the release of a second marble (from the upper-left or
-right, respectively), and so on. The path traversed de-
pends both on the placement of the pieces (the program)
and on their current state (the memory).

Toggles can be in one of two states (left or right, or 0
or 1), which determines which direction the marble rolls
from there. Crucially, each marble’s visit to a toggle
flips its state, toggling it back and forth. Moreover,
special toggles (which we will simply call gears) can be
connected to one another by gears, entangling them, so
that flipping any one of their states flips them all.

The final state of (some subset of) the toggles can
be interpreted as the program’s output. Alternatively,
with two marble colors and two starting points, the color

⇤Lehman College and The Graduate Center, City University
of New York

1https://www.turingtumble.com

Figure 1: Image from the Turing Tum-
ble website.

pattern of mar-
bles collected at
the bottom of
board can also
be interpreted
as output. Ex-
amples from
the Turing
Tumble website
and instruction
manual include
programs for
arithmetic and
counting in bi-
nary, as well as
various marble
color patterns.

Turing Tum-
ble generalizes
the Digi-Comp
II2, a toy me-
chanical computing first sold in the 1960s, whose be-
havior was more restricted in a number of ways: rather
than a general grid, its collection of paths id hardcoded
(specifically, carved into wood), with its ramps and tog-
gles in fixed locations; it has no gears, crossovers or
interceptors, and it has only one color (and source) of
marbles. (Programming it consists entirely in initial-
izing the toggles’ states.) Yet it also can perform in-
teresting computations such as arithmetic and binary
counting. Aaronson [1] investigated the computational
power of a kind of generalized Digi-Comp II in which
the structure of paths and toggle locations is specified
by an arbitrary DAG with a unique source and desig-
nated target sink, and whose internal nodes represent
toggles. He defined DIGICOMP as the problem of de-
ciding whether, for a given instance (i.e., the DAG, the
toggles’ initial states, and the number T of marbles, en-
coded in unary) whether any marbles released at the
DAG’s source will eventually eventually reach its sink.

Aaronson showed that DIGICOMP is not circuit-
universal, i.e., is not P-Complete, but is instead merely
CC-Complete [2]. That is, deciding DIGICOMP is
equivalent not to evaluating Boolean circuits but rather
(under log-space reductions) to evaluating comparator
circuits. One of the open questions Aaronson raised

2https://digi-compii.com

asked what additional potential features to the model
might render DIGICOMP P-Complete. In particular,
he speculated that the addition of direct causal inter-
action between the pieces’ states (“toggles and switches
controlled by other toggles”) might su�ce. In this ab-
stract we show that the interaction provided by Turing
Tumble’s gears indeed results in P-Completeness.

2 Model

It is clear that simulating Turing Tumble with all its fea-
tures is in P. For proving hardness, we make a number
of simplifying restrictions. We assume that there is only
one marble color, only one source, and two out-degree-
0 nodes, one triggering the release of the next marble
and the other being the designated target sink. We
can assume all nodes have in-degree and out-degree at
most 2, or indeed that toggles, ramps, and (bit-storing)
gears can only be placed at odd grid points (see Fig. 1),
while non-bit-storing gears can be placed at even grid
points. (It is illegal for a marble to free-fall.) Although
it will be convenient to draw the construction using
edge crossings, by an argument of Alexander Meiburg
in a comment on Aaronson’s blogpost, we may assume
w.l.o.g. that there are no edge crossings, without using
crossover pieces. We also do not use interceptors.

To have their states entangled, a collection of gears
must be (rectilinearly) contiguous (see Fig. 1). Call a
maximal contiguous set of gears a gear component. No
two pieces can intersect; thus we can assume gear com-
ponents do not have holes.

Lemma 1 Small gear components C can be constructed
such that: when a marble visits it via one entry point
C’s state is flipped as usual, but visits via another entry
point leave C’s state unchanged. Moreover, C can be
designed to have four di↵erent exit points, encoding C’s
state and whether it was flipped by the exiting marble.

Therefore we abstract away from gears to a simpler,
weaker model in which gear components of this kind
are subsumed by a more powerful kind of toggle node
which can be visited in two di↵erent ways, reading its
state and either flipping it or not. Therefore we label
an edge (i, j) (when degrees are greater than one) as be-
ing from F 0

i , F 1
i , R0

i , or R1
i (encoding i’s bit value read

and whether it was flipped or merely read) to Fj or Rj

(encoding whether j’s bit value will be flipped or merely
read). (The actual bit-storing gears underlying the com-
ponent will have out-degree at most 2.) Out-degree-1
nodes are stateless.

The DAG described will include nodes with greater
than two outgoing edges, which are ordered, meaning
that each successive marble leaving the node crosses the
next edge in this list, but this is only for convenience;
such a node can easily be expanded to a directed binary

tree whose (consistent) sequence of paths traversed by
marbles visiting its root is fully determined by its inter-
nal nodes’ initial states.

TURINGTUMBLE is the problem of deciding
whether, when a given n-piece instance is run on 3n
marbles, any of them reach the sink. Note that the only
way in which the formalization generalizes the actual
product is in parameterizing the number of pieces (and
thus the board size). Note also that unlike in the case
of DIGICOMOP’s CC-Completeness proof, we need not
specify the number of marbles as part of the problem in-
stance since the number of marbles the decision problem
concerns is linear in n.

3 Reduction

We reduce from Sequential NOR-CVP [3], a P-
Complete specialized version of the Circuit Value Prob-
lem (CVP). In this version (which does not involve in-
put variables), a circuit is specified by a sequence of n
gates having values G1 = 1, G2 = 0, and for all i > 2,
Gi = !(Gi�1 _Gi0) where p(i) < i. The task is to eval-
uate the state of Gn. By performing [3]’s reduction on
NANDCVP with fanout 2, rather than on general CVP
with ANDs and NOTs, it can be seen that we may as-
sume that NOR gates in Sequential NOR-CVP have
fanout at most 3. Define out-deg(Gi) = |p�1(i)|.
Theorem 2 TURINGTUMBLE is P-Complete under
log-space reductions.

Proof. (Sketch.) Given the Sequential NOR-CVP for-
mula, we construct a Turing Tumble instance as follows.
We create a node for each gate Gi, for i 2 [3, n], initializ-
ing it to 0 if p(i) = 1, and otherwise to 1. We create out-
deg(Gi) edges from the source to Ri, for i 2 [3, n � 1],
and one to Rn; these edges are ordered by index i. For
each pair (Gp(i), Gi) with p(i) > 0, we create an edge
from R1

p(i) to Fi. Finally, we create an edge from R1
n

to the sink. (Any missing edges at exit points can be
assumed to go to the non-sink terminal.) It is clear that
the construction can be performed in log space.

When run, for each i 2 [3, n�1], out-deg(Gi) marbles
will travel from the source to Gi, and, if Gi = 1, thence
to Gi’s children, flipping their states to 0. (Notice that
this happens to each child at most once.) Finally, a
marble travels from the source to Gn, and thence, if
Gn = 1, to the sink. ⇤

References

[1] S. Aaronson. The power of the Digi-Comp II: My first conscious
paperlet, Shtetl-Optimized, 2010. https://www.scottaaronson.
com/blog/?p=1902.

[2] S. A. Cook, Y. Filmus, and D. T. M. Lê. The complexity of the
comparator circuit value problem. ACM ToCT, 6(4):15, 2014.

[3] A. Okhotin. A simple P-complete problem and its language-
theoretic representations. TCS, 412(1-2):68–82, 2011.

